Warianty tytułu
Języki publikacji
Abstrakty
This paper is devoted to study the global existence of solutions of the hyperbolic Dirichlet equation Utt=Lu+f(x,t) in ΩT=Ω×(0,T), where L is a nonlinear operator and ϕ(x,t,⋅), f(x,t) and the exponents of the nonlinearities p(x,t) and μ(x,t) are given functions.
Czasopismo
Rocznik
Tom
Strony
55--69
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University of Fez, B.P 1796 Atlas Fez, Morocco, taghi-med@hotmail.fr
autor
- Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University of Fez, B.P 1796 Atlas Fez, Morocco, atouzani07@gmail.com.
autor
- Laboratory LISA, Department of Electrical and Computer Engineering, National School of Applied Sciences, University of Fez, Fez, Morocco, aberqi_ahmed@yahoo.fr
autor
- Laboratory LSI, Department of Mathematics and Physics and Informatics, Polydisciplinary Faculty of Taza, University of Fez, Taza, Morocco, chihabyazough@gmail.com
Bibliografia
- [1] S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: Existence and blow-up, J. Difference Equ. Appl. 3 (2011), 503-525.
- [2] S. Antontsev, M. Chipot and Y. Xie, Uniqueness results for equations of the p(x)-Laplacian type, Adv. Math. Sci. Appl. 17 (2007), 287-304.
- [3] S. Antontsev, J. I. Diaz and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Progr. Nonlinear Differential Equations Appl. 48, Birkhäuser, Boston, 2002.
- [4] S. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), 19-36.
- [5] S. Antontsev and S. I. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, in: Handbook of Differential Equations, Stationary Partial Differential Equations. Vol. 3, Elsevier, Amsterdam (2006), 1-100.
- [6] S. Antontsev and S. I. Shmarev, Localization of solutions of anisotropic parabolic equations, Nonlinear Anal. 71 (2009), e725-e737.
- [7] S. Antontsev and S. I. Shmarev, Parabolic equations with anisotropic nonstandard growth conditions, in: Free Boundary Problems. Theory and Applications, Internat. Ser. Numer. Math. 154, Birkhäuser, Basel (2006), 33-44.
- [8] S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of p(x, t)-Laplacian type, Adv. Differential Equations 10 (2005), 1053-1080.
- [9] E. Azroul, M. Benboubker, H. Redwane and C. Yazough, Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth, An. Univ. Craiova Ser. Mat. Inform. 41 (2014), no. 1, 69-87.
- [10] A. Benaissa and S. Mokeddem, Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type, Math. Methods Appl. Sci. 30 (2007), 237-247.
- [11] M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data, J. Differential Equations 249 (2010), no. 6, 1483-1515.
- [12] M. Benboubker, H. Chrayteh, M. El Moumni and H. Hjiaj, Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 1, 151-169.
- [13] J. Bennouna, B. El Hamdaoui, M. Mekkour and H. Redwane, Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent, Ric. Mat. 65 (2016), no. 1, 93-125.
- [14] J. Clements, Existence theorems for a quasilinear evolution equation, SIAM J. Appl. Math. 26 (1974), 745-752.
- [15] L. Diening, P. Harjulehto, P. Hästö and M. R´’ažička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, Germany, 2011.
- [16] M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J. 36 (2007), 21-52.
- [17] X. L. Fan and D. Zhao, On the generalised Orlicz-Sobolev Space Wk,p(x)(Ω), J. Gansu Educ. College 12 (1998), no. 1, 1-6.
- [18] V. A. Galaktionov and S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal. 53 (2003), 453-466.
- [19] H. Gao and T. F. Ma, Global solutions for a nonlinear wave equation with p-Laplacian operator, Electron. J. Qual. Theory Differ. Equ. 1999 (1999), Paper No. 11.
- [20] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969.
- [21] J. P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal. 71 (2009), 1094-1099.
- [22] K. Rajagopal and M. Ruzička, Mathematical modeling of electro-rheological fluids, Contin.Mech. Thermodyn. 13 (2001), 59-78.
- [23] M. Ruzička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000.
- [24] S. G. Samko, Density C∞0 (ℝN) in the generalized Sobolev spaces Wm,p(x)(ℝN), Dokl. Akad. Nauk 369 (1999), 451-454.
- [25] J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl. (4) 146 (1952), 65-96.
- [26] G. Todorova and E. Vitillario, Blow-up for nonlinear dissipative wave equations in ℝn, J. Math. Anal. Appl. 303 (2005), 242-257.
- [27] Z. Wilstein, Global well-posedness for a nonlinear wave equation with p-Laplacian damping, Dissertation, University of Nebraska-Lincoln, 2011, http://digitalcommons.unl.edu/mathstudent/24.
- [28] Z. Yang, Cauchy problem for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 320 (2006), 859-881.
- [29] Z. Yang and G. Chen, Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 285 (2003), 604-618.
- [30] D. Zhao, W. J. Qiang and X. L. Fan, On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci. 9 (1997), no. 2.
- [31] Y. Zhijian, Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci. 25 (2002), 795-814.
- [32] Y. Zhijian, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations 187 (2003), 520-540.
- [33] Y. Zhijian, Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Methods Appl. Sci. 26 (2003), 1047-1066.
- [34] Y. Zhijian, Cauchy problem for a class of nonlinear dispersive wave equations arising in elastoplastic flow, J. Math. Anal. Appl. 313 (2006), 197-217.
- [35] V. V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 1-14.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6abcd4bf-0828-48e6-8605-3d8abdcf9762