Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to investigate a stochastic SIS (Susceptible, Infected, Susceptible) epidemic model in which the disease transmission coefficient and the death rate are subject to random disturbances. Using the convergence theorem for local martingales and solving the Fokker-Planck equation associated with the one-dimensional stochastic differential equation, we demonstrate that the disease will almost surely persist in the mean. In the case of global asymptotic stability of the endemic equilibrium for a SIS deterministic epidemic model, we formulate suitable conditions guaranteeing that the stochastic SIS model has a unique ergodic stationary distribution. Furthermore, we deal with the exponential extinction of the disease. Finally, some numerical simulations are provided to illustrate the obtained analytical results.
Rocznik
Tom
Strony
121-134
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Necmettin Erbakan University, Department of Mathematics and Computer Sciences, 42090 Meram Konya, Turkey, M.Yavuz@exeter.ac.uk
- Centre for Environmental Mathematics, Faculty of Environment, Science and Economy University of Exeter, Cornwall TR10 9FE, UK
autor
- ISTI Lab, Ibn Zohr University, ENSA, PO Box 1136, Agadir, Morocco, boulaasair@gmail.com
autor
- ISTI Lab, Ibn Zohr University, ENSA, PO Box 1136, Agadir, Morocco , hbouzahir@yahoo.fr
autor
- UFR Applied Sciences and Technologies, Department of Mathematics Gaston Berger University, PO Box 234, Saint-Louis, Senegal , ordydiop@gmail.com
autor
- ISTI Lab, Ibn Zohr University, ENSA, PO Box 1136, Agadir, Morocco, brahim.benaid@gmail.com
Bibliografia
- [1] Kermack, W.O., & Mckendrick, Á .G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 115, 700-721.
- [2] Su, T., & Zhang, X. (2023). Stationary distribution and extinction of a stochastic generalized SIE epidemic model with Ornstein-Uhlenbeck process. Applied Mathematics Letters, 143, 108690.
- [3] Fan, H.,Wang, K., & Zhu, Y. (2023). Stability and asymptotic properties of the SEQIR epidemic model. Applied Mathematics Letters, 141, 108604.
- [4] Gray, A.J., Greenhalgh, D., Hu, L., Mao, X., & Pan, J. (2011). A stochastic differential equation SIS epidemic model. SIAM Journal on Applied Mathematics, 71, 876-902.
- [5] Evirgen, F., Ucar, E., O¨ zdemir, N., Altun, E., & Abdeljawad, T. (2023). The impact of nonsingular memory on the mathematical model of Hepatitis C virus. Fractals, 2340065.
- [6] Xu, Ch. (2017). Global threshold dynamics of a stochastic differential equation SIS model. Journal of Mathematical Analysis and Applications, 447(2), 736-757.
- [7] Roy, S., & Majumdar, S. (2022). Noise and Randomness in Living System. Springer.
- [8] Ikram, R., Khan, A., Zahri, M., Saeed, A., Yavuz, M., & Kumam, P. (2022). Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay. Computers in Biology and Medicine, 141, 105115.
- [9] Mustapha, U.T., Abdurrahman, A.D.O., Yusuf, A., Qureshi S., & Musa, S.S. (2023). Mathematical dynamics for HIV infections with public awareness and viral load detectability. Mathematical Modelling and Numerical Simulation with Applications, 3(3), 256-280.
- [10] Boulaasair, L. (2023). Threshold properties of a stochastic epidemic model with a variable vaccination rate. Bulletin of Biomathematics, 1(2), 177-191.
- [11] Koca, I., &Atangana, A. (2023). Theoretical and numerical analysis of a chaotic model with nonlocal and stochastic differential operators. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(2), 181-192.
- [12] Dixit, J., Prinja, S., Jyani, G., Bahuguna, P., Gupta, A., Vijayvergiya, R., & Kumar, R. (2023). Evaluating efficiency and equity of prevention and control strategies for rheumatic fever and rheumatic heart disease in India: an extended cost-effectiveness analysis. The Lancet. Global Health, 11(3), e445-e455.
- [13] Karatzas, I., & Shreve, S. (2012). Brownian Motion and Stochastic Calculus. Vol. 113. Springer Science & Business Media.
- [14] Liptser, R., & Shiryayev, A.N. (2012). Theory of Martingales. Vol. 49. Springer Science & Business Media.
- [15] Liptser, R.Sh. (1980). A strong law of large numbers for local martingales. Stochastics, 3(1-4), 217-228.
- [16] Lahroz, A., & Omari, L. (2013). Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Statistics & Probability Letters, 83(4), 960-968.
- [17] Kutoyants, Yu A. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer Science & Business Media.
- [18] Zhou, Y., Zhang, W., & Yuan, S. (2013). Survival and stationary distribution in a stochastic SIS model. Discrete Dynamics in Nature and Society 2013.
- [19] Higham, D. (2001). An algorithmic introduction to numerical simulation of stochastic differentia equations. SIAM Review, 43, 525-546.
- [20] Danane, J., Yavuz, M., & Yıldız, M. (2023). Stochastic modeling of three-species Prey-Predator model driven by L´evy jump with mixed Holling-II and Beddington-DeAngelis functional responses. Fractal and Fractional, 7(10), 751.
- [21] Yusuf, A., Qureshi, S., Mustapha, U.T., Musa, S.S., & Sulaiman, T.A. (2022). Fractional modeling for improving scholastic performance of students with optimal control. International Journal of Applied and Computational Mathematics, 8(1), 37.
- [22] Sabbar, Y. (2023). Asymptotic extinction and persistence of a perturbed epidemic model with different intervention measures and standard Lévy jumps. Bulletin of Biomathematics, 1(1), 58-77.
- [23] Peter, O.J., Qureshi, S., Ojo, M.M., Viriyapong, R., & Soomro, A. (2023). Mathematical dynamics of measles transmission with real data from Pakistan. Modeling Earth Systems and Environment, 9(2), 1545-1558.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6ab43331-e05f-4839-bf5f-57dd25c8acb2