Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 7 | 398--409
Tytuł artykułu

Assessment and Modeling of the Vulnerability of Regional Aquifers to Anthropogenic Perturbations

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is at the core for achieving all 17 sustainable development goals (SDGs). The current study was performed for the appraisal and modeling of the vulnerability of regional aquifers to anthropogenic perturbations. Samples of water were examined to determine their physical and chemical properties. pH of groundwater varied from a value of 7.08 to a value of 8.46. Total dissolved solids (TDS) varied from 1048‒1580 mg·L-1. Results revealed that 79% of Ca2+, 47.3 % of Mg2+, and 100% of Na+ and Cl in water samples exceeded the standard permissible limits. The aquifer vulnerability index (AVI) revealed that Neogene aquifer was categorized as high vulnerability to extremely high vulnerability class of risk of contamination. AVI index method was also performed for the other major aquifers demonstrating that Dammam aquifer was categorized in the high vulnerability class, whereas Er Radhuma and Aruma categorized as moderately vulnerable to contamination. This study demonstrated an integrated model to help investigate the vulnerability of regional aquifers and highlighted the need for continuous monitoring campaigns to investigate the effects of anthropogenic activities on aquifers to make timely and effective decisions.
Wydawca

Rocznik
Strony
398--409
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Water and Environmental Study Centre, King Faisal University Al-Ahsa, Saudi Arabia, aghafoor@kfu.edu.sa
  • Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
  • Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
  • Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
  • Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
autor
  • Water and Environmental Study Centre, King Faisal University Al-Ahsa, Saudi Arabia
  • Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
  • Water and Environmental Study Centre, King Faisal University Al-Ahsa, Saudi Arabia
  • Department of Environmental Sciences, G.C. University Faisalabad, Faisalabad, Pakistan
  • Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
Bibliografia
  • 1. Abdel-Satar A.M., Al-Khabbas M.H., Alahmad W.R., Yousef W.M., Alsomadi R.H., Iqbal T. 2017. Quality assessment of groundwater and agricultural soil in Hail region, Saudi Arabia. Egyptian Journal of Aquatic Research, 43(1), 55–64. https://doi.org/10.1016/j.ejar.2016.12.004
  • 2. Acharya S., Sharma S.K., Khandegar V. 2018. Assessment of groundwater quality by water quality indices for irrigation and drinking in South West Delhi, India. Data in Brief, 18, 2019–2028. https://doi.org/10.1016/j.dib.2018.04.120
  • 3. Ahmad A.Y., Al-Ghouti M.A. 2020. Approaches to achieve sustainable use and management of groundwater resources in Qatar: A review. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/j.gsd.2020.100367
  • 4. Al-Omran A.M., Aly A.A., Al-Wabel M.I., Al-Shayaa M.S., Sallam A.S., Nadeem M.E. 2017. Geostatistical methods in evaluating spatial variability of groundwater quality in Al-Kharj Region, Saudi Arabia. Applied Water Science, 7(7), 4013–4023. https://doi.org/10.1007/s13201-017-0552-2
  • 5. Al-Omran A.M., Aly A.A., Al-Wabel M.I., Sallam A.S., Al-Shayaa M.S. 2016. Hydrochemical characterization of groundwater under agricultural land in arid environment: a case study of Al-Kharj, Saudi Arabia. Arabian Journal of Geosciences, 9(1), 1–17. https://doi.org/10.1007/s12517-015-2136-5
  • 6. Al-Omran A.M., Mousa M.A., AlHarbi M.M., Nadeem M.E.A. 2018. Hydrogeochemical characterization and groundwater quality assessment in Al-Hasa, Saudi Arabia. Arabian Journal of Geosciences, 11(4), 79. https://doi.org/10.1007/s12517-018-3420-y
  • 7. Al-Zarah A.I. 2007. Hydrogeochemical processes of Alkhobar aquifer in eastern region, Saudi Arabia. Journal of Applied Sciences, 7(23), 3669–3677. https://doi.org/10.3923/jas.2007.3669.3677
  • 8. Al Tokhais A.S., Rausch R. 2008. The Hydrogeology of Al Hassa Springs. The 3rd International Conference on Water Resources and Arid Environments, 1, 16–19.
  • 9. Alghamdi A.G., Aly A.A., Aldhumri S.A., Al-Barakaha F.N. 2020. Hydrochemical and quality assessment of groundwater resources in Al-Madinah City, Western Saudi Arabia. Sustainability (Switzerland), 12(8), 1–14. https://doi.org/10.3390/SU12083106
  • 10. Aller L., Bennett T., Lehr J.H., Petty R.J., Hackett G. 1987. DRASTIC : A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. NWWA/EPA--600/2-87035 Series. Ada, Oklahoma, U.S. Environmental Protection Agency, 455.
  • 11. Aly A.A., Al-Omran A.M., Alharby M.M. 2015. The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arabian Journal of Geosciences, 8(6), 4177–4190. https://doi.org/10.1007/s12517-014-1463-2
  • 12. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. Standard Methods. https://doi.org/ISBN9780875532356
  • 13. Bakiewicz W., Milne D.M., Noori M. 1982. Hydrogeology of the Umm ErRadhuma aquifer, Saudi Arabia, with reference to fossil gradients. Quarterly Journal of Engineering Geology and Hydrogeology, 15, 105–126.
  • 14. Carol E.S., Kruse E.E., Laurencena P.C., Rojo A., Deluchi M.H. 2012. Ionic exchange in groundwater hydrochemical evolution. Study case: The drainage basin of El Pescado creek (Buenos Aires province, Argentina). Environmental Earth Sciences, 65(2). https://doi.org/10.1007/s12665-011-1318-z
  • 15. Chen J., Huang Q., Lin Y., Fang Y., Qian H., Liu R., Ma H. 2019. Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water (Switzerland), 11(1). https://doi.org/10.3390/w11010096
  • 16. Clapp R.B., Hornberger G.M. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research, 14(4). https://doi.org/10.1029/WR014i004p00601
  • 17. Dawood A.S., Jabbar M.T., Al-Tameemi H.H., Baer E.M. 2022. Application of Water Quality Index and Multivariate Statistical Techniques to Assess and Predict of Groundwater Quality with Aid of Geographic Information System. Journal of Ecological Engineering, 23(6). https://doi.org/10.12911/22998993/148195
  • 18. El-Sayed H.M., Elgendy A.R. 2024. Geospatial and geophysical insights for groundwater potential zones mapping and aquifer evaluation at Wadi Abu Marzouk in El-Nagila, Egypt. Egyptian Journal of Aquatic Research. https://doi.org/10.1016/j.ejar.2023.12.008
  • 19. El-Sayed H.M., Ibrahim M.I.A., Abou Shagar A.S., Elgendy A.R. 2023. Geophysical and hydrochemical analysis of saltwater intrusion in El-Omayed, Egypt: Implications for sustainable groundwater management. Egyptian Journal of Aquatic Research, 49(4). https://doi.org/10.1016/j.ejar.2023.11.005
  • 20. Ettazarini S. 2005. Processes of water-rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco. Environmental Geology, 49(2). https://doi.org/10.1007/s00254-005-0088-x
  • 21. Fonseca L.M., Domingues J.P., Dima A.M. 2020. Mapping the sustainable development goals relationships. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083359
  • 22. Gogu R.C., Dassargues A. 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), 549–559. https://doi.org/10.1007/s002540050466
  • 23. Iqbal J., Nazzal Y., Howari F., Xavier C., Yousef A. 2018. Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: The case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundwater for Sustainable Development, 7, 212–219. https://doi.org/10.1016/j.gsd.2018.06.004
  • 24. Kumar P., Bansod B.K.S., Debnath S.K., Thakur P.K., Ghanshyam C. 2015. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. In Environmental Impact Assessment Review, 51, 38–49. https://doi.org/10.1016/j.eiar.2015.02.001
  • 25. Masetti M., Sterlacchini S., Ballabio C., Sorichetta A., Poli S. 2009. Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment. Science of the Total Environment, 407(12), 3836–3846. https://doi.org/10.1016/j.scitotenv.2009.01.055
  • 26. Mukhopadhyay A., Al-Sulaimi J., Al-Awadi E., AlRuwaih F. 1996. An overview of the Tertiary geology and hydrogeology of the northern part of the Arabian Gulf region with special reference to Kuwait. Earth-Science Reviews, 40(3–4), 259–295. https://doi.org/10.1016/0012-8252(95)00068-2
  • 27. Nasr M., Zahran H.F. 2014. Using of pH as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network. Egyptian Journal of Aquatic Research, 40(2). https://doi.org/10.1016/j.ejar.2014.06.005
  • 28. Pebesma E.J. 2004. Multivariable geostatistics in S: The gstat package. Computers and Geosciences, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012
  • 29. Phan C.N., Strużyński A., Kowalik T. 2023. Correlation between hydrochemical component of surface water and groundwater in Nida Valley, Poland. Journal of Ecological Engineering, 24(12). https://doi.org/10.12911/22998993/172424
  • 30. Piper A.M. 1944. A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025i006p00914
  • 31. Raju N.J., Ram P., Gossel W. 2014. Evaluation of groundwater vulnerability in the lower Varuna catchment area, Uttar Pradesh, India using AVI concept. Journal of the Geological Society of India, 83(3), 273–278. https://doi.org/10.1007/s12594-014-0039-9
  • 32. Rice E., Baird R., Eaton A., Clesceri L. 2012. Standard Methods for the Examination of Water and Wastewater. Standard Methods.
  • 33. Saleh A., Gad A., Ahmed A., Arman H., Farhat H.I. 2023. Groundwater Hydrochemical Characteristics and Water Quality in Egypt’s Central Eastern Desert. Water (Switzerland), 15(5). https://doi.org/10.3390/w15050971
  • 34. Van Stempvoort D., Ewert L., Wassenaar L. 1993. Aquifer vulnerability index: A GIS - compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal, 18(1), 25–37. https://doi.org/10.4296/cwrj1801025
  • 35. WHO. 2008. Guidelines for Drinking-water Quality. World Health Organization, 1.
  • 36. WHO. 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva. World Health Organization, 4(Licence: CC BY-NC-SA 3.0 IGO.).
  • 37. Wösten J.H.M., Pachepsky Y.A., Rawls W.J. 2001. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251(3–4), 123–150. https://doi.org/10.1016/S0022-1694(01)00464-4
  • 38. Yang J., Liu H., Tang Z., Peeters L., Ye M. 2022. Visualization of Aqueous Geochemical Data Using Python and WQChartPy. Groundwater, 60(4). https://doi.org/10.1111/gwat.13185
  • 39. Yu C., Yao Y., Hayes G., Zhang B., Zheng C. 2010. Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Science of the Total Environment, 408(24), 6108–6116. https://doi.org/10.1016/j.scitotenv.2010.09.002
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6a3eb145-f7b2-4cb3-9975-9b3aaff97e42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.