Warianty tytułu
Języki publikacji
Abstrakty
Precipitation is a key component in hydrologic processes. It plays an important role in hydrological modeling and water resource management. However, many regions suffer from limited and data scarcity due to the lack of ground-based rain gauge networks. The main objective of this study is to evaluate other source of rainfall data such as remote sensing data (three different satellite-based precipitation products (CHIRPS, PERSIANN, and GPM) and a reanalysis (ERA5) against groundbased data, which could provide complementary rainfall information in semiarid catchment of Tunisia (Haffouz catchment), for the period between September 2000 and August 2018. These remotely sensed-data are compared for the first time with observations in a semiarid catchment in Tunisia. Twelve rain gauges and two different interpolation methods (inverse distance weight and ordinary kriging) were used to compute a set of interpolated precipitation reference fields. The evaluation was performed at daily, monthly, and yearly time scales and at different spatial scales, using several statistical metrics. The results showed that the two interpolation methods give similar precipitation estimates at the catchment scale. According to the different statistical metrics, CHIRPS showed the most satisfactory results followed by PERSIANN which performed well in terms of correlation but overestimated precipitations spatially over the catchment. GPM underestimates the precipitation considerably, but it gives a satisfactory performance temporally. ERA5 shows a very good performance at daily, monthly, and yearly timescale, but it is unable to represent the spatial variability distribution of precipitation for this catchment. This study concluded that satellite-based precipitation products or reanalysis data can be useful in semiarid regions and data-scarce catchments, and it may provide less costly alternatives for data-poor regions.
Czasopismo
Rocznik
Tom
Strony
1257--1273
Opis fizyczny
Bibliogr. 81 poz.
Twórcy
autor
- National Agronomic Institute of Tunisia - INAT, LR17AGR01, InteGRatEd Management of Natural Resources: remoTE Sensing, Spatial Analysis and Modeling (GREEN-TEAM), Carthage University, 1082 Tunis, Tunisia, ines.gharnoukii@gmail.com
- Center for Water Research and Technologies, CERTE, Route of Soliman Nabeul, PO-box N°273, 8020 Soliman, Tunisia
autor
- National Agronomic Institute of Tunisia - INAT, LR17AGR01, InteGRatEd Management of Natural Resources: remoTE Sensing, Spatial Analysis and Modeling (GREEN-TEAM), Carthage University, 1082 Tunis, Tunisia, jalelinat@gmail.com
autor
- Center for Water Research and Technologies, CERTE, Route of Soliman Nabeul, PO-box N°273, 8020 Soliman, Tunisia, sihem.benabdallah@planet.tn
autor
- Espace-Dev, Univ. Montpellier, IRD, Montpellier, France, yves.tramblay@ird.fr
Bibliografia
- 1. Abd Elhamid AMI, Eltahan AMH, Mohamed LME, Hamouda IA (2020) Assessment of the two satellite-based precipitation products TRMM and RFE rainfall records using ground based measurements. Alex Eng J 59(2):1049-1058. https://doi.org/10.1016/j. aej.2020.03.035
- 2. Aouissi J, Benabdallah S, Lili Chabaane Z, Cudennec C (2018) Valuing scarce observation of rainfall variability with flexible semidistributed hydrological modelling - Mountainous Mediterranean context. Sci Total Environ 643:346-356. https://doi.org/10.1016/j. scitotenv.2018.06.086
- 3. Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo A (2017) MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21(1):589-615. https://doi.org/10.5194/hess-21-589-2017
- 4. Behrangi A, Khakbaz B, Jaw TC, AghaKouchak A, Hsu K, Sorooshian S (2011) Hydrologic evaluation of satellite precipitation products over a mid-size basin. J Hydrol 397(3-4):225-237. https://doi.org/10.1016/j.jhydrol.2010.11.043
- 5. Berg P, Norin L, Olsson J (2016) Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden. J Hydrol 541:6-13. https://doi.org/ 10.1016/j.jhydrol.2015.11.031
- 6. Berges J-C (2019) GPM, le programme Global Precipitation Measurement (NASA/JAXA)—fondements théoriques et acces a la base de données. Climatologie 16:23-51. https://doi. org/10. 4267/climatologie.1374
- 7. Bouaziz M, Medhioub E, Csaplovisc E (2021) A machine learning model for drought tracking and forecasting using remote precipitation data and a standardized precipitation index from arid regions. J Arid Environ 189:104478. https://doi.org/10.1016/j. jaridenv.2021.104478
- 8. Brocca L, Filippucci P, Hahn S, Ciabatta L, Massari C, Camici S, Schüller L, Bojkov B, Wagner W (2019) SM2RAIN-ASCAT (2007-2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst Sci Data 11(4):1583-1601. https://doi.org/10.5194/essd-11-1583-2019
- 9. Cantoni E, Tramblay Y, Grimaldi S, Salamon P, Dakhlaoui H, Dezet-ter A, Thiemig V (2022) Hydrological performance of the ERA5 reanalysis for flood modeling in Tunisia with the LISFLOOD and GR4J models. J Hydrol Reg Stud 42:101169. https://doi.org/10. 1016/j.ejrh.2022.101169
- 10. Chargui S, Cudennec C, Slimani M, Pouget JC, Aouissi J (2009) Robust and flexible hydroinformatics to account for rainfall space-time variability in a data-sparse region. In: Proc. of Symposium HS.2 at the Joint IAHS & IAH Convention, Hyderabad, India, September 2009. IAHS Publ. 333, pp 295-299
- 11. Chargui S, Slimani M, Cudennec C (2013) Statistical distribution of rainy events characteristics and instantaneous hyetographs generation (Merguellil watershed in central Tunisia). Arab J Geosci 6(5):1581-1590. https://doi.org/10.1007/s12517-011-0440-2
- 12. Chen H, Yong B, Gourley JJ, Liu J, Ren L, Wang W, Hong Y, Zhang J (2019) Impact of the crucial geographic and climatic factors on the input source errors of GPM-based global satellite precipitation estimates. J Hydrol 575:1-16. https://doi.org/10.1016/j.jhydr ol.2019.05.020
- 13. Chiaravalloti F, Brocca L, Procopio A, Massari C, Gabriele S (2018) Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy. Atmos Res 206:64-74. https://doi.org/10.1016/j.atmosres.2018.02.019
- 14. Cudennec C, Slimani M, le Goulven P (2005) Accounting for sparsely observed rainfall space—time variability in a rainfall—runoff model of a semiarid Tunisian basin/Prise en compte d’observations peu denses de la variabilité spatiotemporelle de la pluie dans une modélisation pluie—débit d’un bassin semi-aride Tunissien. Hydrol Sci J 50(4):4. https://doi.org/10.1623/hysj.2005. 50.4.617
- 15. da Silva ASA, Stosic B, Menezes RSC, Singh VP (2019) Comparison of interpolation methods for spatial distribution of monthly precipitation in the state of pernambuco. Brazil J Hydrol Eng 24(3):04018068. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001743
- 16. de Brito CS, da Silva RM, Santos CAG, Brasil Neto RM, Coelho VHR (2022) Long-term basin-scale comparison of two highresolution satellite-based remote sensing datasets for assessing rainfall and erosivity in a basin in the Brazilian semiarid region. Theoret Appl Climatol 147(3-4):1049-1064. https://doi.org/10. 1007/s00704-021-03857-w
- 17. Dhib S, Mannaerts CM, Bargaoui Z, Retsios V, Maathuis BHP (2017) Evaluating the MSG satellite Multi-sensor precipitation estimate for extreme rainfall monitoring over northern Tunisia.
- 18. Weather Clim Extremes 16:14-22. https://doi.org/10.1016/j. wace.2017.03.002
- 19. Dhib S, Chaney N, Mannaerts CM, Bargaoui Z (2021) Comparison of two bias correction methods for TRMM 3B42 satellite daily rainfall estimates over northern TUNISIA. Arab J Geosci 14(7):626. https://doi.org/10.1007/s12517-021-06916-8
- 20. Di Piazza A, Conti FL, Noto LV, Viola F, La Loggia G (2011) Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for SICILY, Italy. Int J Appl Earth Obs Geoinf 13(3):396-408. https://doi.org/10.1016/j.jag.2011.01.005
- 21. Eini MR, Rahmati A, Piniewski M (2022) Hydrological application and accuracy evaluation of PERSIANN satellite-based precipitation estimates over a humid continental climate catchment. J Hydrol Reg Stud 41:101109. https://doi.org/10.1016/j.ejrh. 2022.101109
- 22. Eltazarov S, Bobojonov I, Kuhn L, Glauben T (2021) Mapping weather risk—a multi-indicator analysis of satellite-based weather data for agricultural index insurance development in semi-arid and arid zones of central Asia. Clim Serv 23:100251. https://doi.org/10.1016/j.cliser.2021.100251
- 23. Fehri R, Khlifi S, Vanclooster M (2020) Testing a citizen science water monitoring approach in Tunisia. Environ Sci Policy 104:67-72. https://doi.org/10.1016/j.envsci.2019.11.009
- 24. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data 2(1):150066. https://doi.org/10.1038/sdata.2015.66
- 25. Gebere S, Alamirew T, Merkel B, Melesse A (2015) Performance of high resolution satellite rainfall products over data scarce parts of eastern Ethiopia. Remote Sens 7(9):11639-11663. https:// doi.org/10.3390/rs70911639
- 26. Guermazi E, Milano M, Reynard E (2019) Performance evaluation of satellite-based rainfall products on hydrological modeling for a transboundary catchment in northwest Africa. Theoret Appl Climatol 138(3-4):1695-1713. https://doi.org/10.1007/ s00704-019-02928-3
- 27. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muňoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999-2049. https:// doi.org/10.1002/qj.3803
- 28. Hsu J, Huang W-R, Liu P-Y (2021) Performance assessment of GPM-based near-real-time satellite products in depicting diurnal precipitation variation over Taiwan. J Hydrol Reg Stud 38:100957. https://doi.org/10.1016/j.ejrh.2021.100957
- 29. Hussain Y, Satgé F, Hussain MB, Martinez-Carvajal H, Bonnet M-P, Cárdenas-Soto M, Roig HL, Akhter G (2018) Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theoret Appl Climatol 131(3-4):1119-1132. https://doi.org/10.1007/ s00704-016-2027-z
- 30. Islam MdA, Yu B, Cartwright N (2020) Assessment and comparison of five satellite precipitation products in Australia. J Hydrol 590:125474. https://doi.org/10.1016/j.jhydrol.2020.125474
- 31. Jebari S, Berndtsson R, Bahri A, Boufaroua M (2008) Exceptional rainfall characteristics related to erosion risk in semiarid Tunisia. Open Hydrol J 2(1):25-33. https://doi.org/10.2174/1874378100 802010025
- 32. Jiang S, Ren L, Hong Y, Yong B, Yang X, Yuan F, Ma M (2012) Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J Hydrol 452-453:213-225. https://doi.Org/10.1016/j.jhydrol.2012. 05.055
- 33. Jiang S, Zhou M, Ren L, Cheng X, Zhang P (2016) Evaluation of latest TMPA and CMORPH satellite precipitation products over yellow river basin. Water Sci Eng 9(2):87-96. https://doi.org/ 10.1016/j.wse.2016.06.002
- 34. Jiao D, Xu N, Yang F, Xu K (2021) Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci Rep 11(1):17956. https://doi.org/10.1038/s41598-021-97432-y
- 35. Katsanos D, Retalis A, Michaelides S (2016) Validation of a highresolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos Res 169:459-464. https://doi.org/10. 1016/j.atmosres.2015.05.015
- 36. Kidd C (2001) Satellite rainfall climatology: a review. Int J Climatol 21(9):1041-1066. https://doi.org/10.1002/joc.635
- 37. Kingumbi A (1997) Caractérisation morphométrique du bassin versant du Merguellil : application a la simulation des écoule-ments de surface et a l’érosion. Thesis, Tunis National School of Engineering, p 96
- 38. Kumar M, Hodnebrog 0, Sophie Daloz A, Sen S, Badiger S, Krish-naswamy J (2021) Measuring precipitation in Eastern Himalaya: ground validation of eleven satellite, model and gauge interpolated gridded products. J Hydrol 599:126252. https://doi.org/ 10.1016/j.jhydrol.2021.126252
- 39. Lahoz WA, De Lannoy GJM (2014) Closing the gaps in Our knowledge of the hydrological cycle over land: conceptual problems. Surv Geophys 35(3):623-660. https://doi.org/10.1007/ s10712-013-9221-7
- 40. Lavers DA, Simmons A, Vamborg F, Rodwell MJ (2022) An evaluation of ERA5 precipitation for climate monitoring. Q J R Mete-orol Soc 148(748):3152-3165. https://doi.org/10.1002/qj.4351
- 41. Lettenmaier DP (2017) Observational breakthroughs lead the way to improved hydrological predictions: observational breakthroughs in hydrology. Water Resour Res 53(4):2591-2597. https://doi. org/10.1002/2017WR020896
- 42. Levizzani V, Cattani E (2019) Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate. Remote Sens 11(19):2301. https://doi.org/10.3390/rs11192301
- 43. Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23, p 137
- 44. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw 53:173-189. https://doi.org/10.1016/j.envsoft.2013.12.008
- 45. Li Z, Yang D, Gao B, Jiao Y, Hong Y, Xu T (2015) Multiscale Hydrologic applications of the latest satellite precipitation products in the yangtze river basin using a distributed hydrologic model. J Hydrometeorol 16(1):407-426. https://doi.org/ 10.1175/JHM-D-14-0105.1
- 46. Longo-Minnolo G, Vanella D, Consoli S, Pappalardo S, Ramírez-Cuesta JM (2022) Assessing the use of ERA5-Land reanalysis and spatial interpolation methods for retrieving precipitation estimates at basin scale. Atmos Res 271:106131. https://doi. org/10.1016/j.atmosres.2022.106131
- 47. Maggioni V, Meyers PC, Robinson MD (2016) A review of merged high-resolution satellite precipitation product accuracy during the tropical rainfall measuring mission (TRMM) era. J Hydrometeorol 17(4):1101-1117. https://doi.org/10.1175/ JHM-D-15-0190.1
- 48. Medhioub E, Bouaziz M, Achour H, Bouaziz S (2019) Monthly assessment of TRMM 3B43 rainfall data with high-density gauge stations over Tunisia. Arab J Geosci 12(2):15. https://doi.org/10. 1007/s12517-018-4155-5
- 49. Meydani A, Dehghanipour A, Schoups G, Tajrishy M (2022) Daily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling : application to Urmia Lake basin.
- 50. Iran J Hydrol Reg Stud 44:101228. https://doi.org/10.1016/j.ejrh. 2022.101228
- 51. Moges DM, Kmoch A, Uuemaa E (2022) Application of satellite and reanalysis precipitation products for hydrological modeling in the data-scarce Porijögi catchment. Estonia J Hydrol Reg Stud 41:101070. https://doi.org/10.1016/j.ejrh.2022.101070
- 52. Moreno M, Bertolín C, Ortiz P, Ortiz R (2022) Satellite product to map drought and extreme precipitation trend in Andalusia, Spain: a novel method to assess heritage landscapes at risk. Int J Appl Earth Obs Geoinf 110:102810. https://doi.org/10.1016/j.jag.2022. 102810
- 53. Narulita I, Fajary FR, Mulyono A, Kusratmoko E, Djuwansah MR (2021) Application of climate hazards group infrared precipitation with station (chirps) satellite data for drought mitigation in bintan island, Indonesia. IOP Conf Ser Earth Environ Sci 789(1):012052. https://doi.org/10.1088/1755-1315/789/1/012052
- 54. Navarro A, García-Ortega E, Merino A, Sánchez JL, Tapiador FJ (2020) Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): the effects of rain gauge density and altitude. Atmos Res 244:105068. https://doi.org/10.1016/j. atmosres.2020.105068
- 55. Nguyen P, Ombadi M, Sorooshian S, Hsu K, AghaKouchak A, Braithwaite D, Ashouri H, Thorstensen AR (2018) The PERSIANN family of global satellite precipitation data: a review and evaluation of products. Hydrol Earth Syst Sci 22(11):5801-5816. https:// doi.org/10.5194/hess-22-5801-2018
- 56. Nguyen P, Shearer EJ, Tran H, Ombadi M, Hayatbini N, Palacios T, Huynh P, Braithwaite D, Updegraff G, Hsu K, Kuligowski B, Logan WS, Sorooshian S (2019) The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Scientific Data 6(1):180296. https://doi.org/ 10.1038/sdata.2018.296
- 57. Ning S, Song F, Udmale P, Jin J, Thapa BR, Ishidaira H (2017) Error analysis and evaluation of the latest GSMap and IMERG precipitation products over eastern china. Adv Meteorol 2017:1-16. https://doi.org/10.1155/2017/1803492
- 58. Omar GM, Paturel J-E, Salles C, Mahé G, Jalludin M, Satgé F, Nour MI (2023) Evaluation of rainfall products in semi-arid areas: application to the southeast of the republic of Djibouti and a focus on the ambouli catchment. Water 15(12):2168. https://doi.org/10. 3390/w15122168
- 59. Omonge P, Feigl M, Olang L, Schulz K, Herrnegger M (2022) Evaluation of satellite precipitation products for water allocation studies in the Sio-Malaba-Malakisi river basin of East Africa. J Hydrol Reg Stud 39:100983. https://doi.org/10.1016/j.ejrh.2021.100983
- 60. Paredes-Trejo FJ, Barbosa HA, Lakshmi Kumar TV (2017) Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J Arid Environ 139:26-40. https://doi.org/10.1016/j.jarid env.2016.12.009
- 61. Rachdane M, Khalki EME, Saidi ME, Nehmadou M, Ahbari A, Tram-blay Y (2022) Comparison of high-resolution satellite precipitation products in sub-saharan morocco. Water 14(20):3336. https:// doi.org/10.3390/w14203336
- 62. Ramadhan R, Marzuki M, Yusnaini H, Muharsyah R, Suryanto W, Sholihun S, Vonnisa M, Battaglia A, Hashiguchi H (2022) Capability of GPM IMERG products for extreme precipitation analysis over the Indonesian maritime continent. Remote Sens 14(2):412. https://doi.org/10.3390/rs14020412
- 63. Rivera JA, Marianetti G, Hinrichs S (2018) Validation of CHIRPS precipitation dataset along the central Andes of Argentina. Atmos Res 213:437-449. https://doi.org/10.1016/j.atmosres.2018.06.023
- 64. Rivera JA, Hinrichs S, Marianetti G (2019) Using CHIRPS dataset to assess wet and dry conditions along the semiarid central-western Argentina. Advances in Meteorology 2019:1-18. https://doi.org/ 10.1155/2019/8413964
- 65. Saouabe T, El Khalki EM, Saidi MEM, Najmi A, Hadri A, Rachidi S, Jadoud M, Tramblay Y (2020) Evaluation of the GPM-IMERG precipitation product for flood modeling in a semi-arid mountainous basin in morocco. Water 12(9):2516. https://doi.org/10.3390/ w12092516
- 66. Scheel MLM, Rohrer M, Huggel Ch, Santos Villar D, Silvestre E, Huffman GJ (2011) Evaluation of TRMM Multi-satellite precipitation analysis (TMPA) performance in the central Andes region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15(8):2649-2663. https://doi.org/10.5194/hess-15-2649-2011
- 67. Sheffield J, Wood EF, Pan M, Beck H, Coccia G, Serrat-Capdevila A, Verbist K (2018) Satellite remote sensing for water resources management: potential for supporting sustainable development in data-poor regions. Water Resour Res 54(12):9724-9758. https:// doi.org/10.1029/2017WR022437
- 68. Shi J, Bao Z, Zhang J, Liu C, Jin J, Liu Y, Wang G (2022) Comparison of the performance of IMERG products and interpolation-based precipitation estimates in the middle reaches of yellow river basin. Water 14(9):1503. https://doi.org/10.3390/w14091503
- 69. Singh VG, Singh SK, Kumar N, Kumar P, Gupta PK, Singh PK, Gašparović M, Ray RL, Saito O (2022) Water accounting using satellite products and water accounting plus framework in a semiarid betwa river basin. India Water 14(21):3473. https://doi.org/ 10.3390/w14213473
- 70. Slimani M, Cudennec C, Feki H (2007) Structure du gradient pluvio-métrique de la transition Méditerranée-Sahara en Tunisie : déter-minants géographiques et saisonnalité/structure of the rainfall gradient in the Mediterranean-Sahara transition in Tunisia: geographical determinants and seasonality. Hydrol Sci J 52(6):1088-1102. https://doi.org/10.1623/hysj.52.6.1088
- 71. Smith EA, Asrar G, Furuhama Y, Ginati A, Mugnai A, Nakamura K, Adler RF, Chou MD, Desbois M, Durning JF, Entin JK, Einaudi F, Ferraro RR, Guzzi R, Houser PR, Hwang PH, Iguchi T, Joe P, Kakar R, Zhang W (2007) International Global Precipitation Measurement (GPM) Program and Mission: An Overview. In Levizzani V, Bauer P, Turk FJ (Éds.), Measuring Precipitation From Space (p. 611-653). Springer, Netherlands. https://doi.org/ 10.1007/978-1-4020-5835-6_48
- 72. Sorooshian S, Hsu K-L, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteor Soc 81(9):2035-2046. https:// doi.org/10.1175/1520-0477(2000)081%3c2035:EOPSSE%3e2.3. CO;2
- 73. Stisen S, Tumbo M (2015) Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data. Hydrol Sci J. https://doi.org/10.1080/ 02626667.2014.992789
- 74. Suliman AHA, Awchi TA, Al-Mola M, Shahid S (2020) Evaluation of remotely sensed precipitation sources for drought assessment in
- 75. Semi-Arid Iraq. Atmos Res 242:105007. https://doi.org/10.1016/j. atmosres.2020.105007
- 76. Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu K (2018) A Review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79-107. https://doi.org/ 10.1002/2017RG000574
- 77. Teegavarapu RSV, Meskele T, Pathak CS (2012) Geo-spatial gridbased transformations of precipitation estimates using spatial interpolation methods. Comput Geosci 40:28-39. https://doi.org/ 10.1016/j.cageo.2011.07.004
- 78. Tramblay Y, Thiemig V, Dezetter A, Hanich L (2016) Evaluation of satellite-based rainfall products for hydrological modelling in Morocco. Hydrol Sci J 61(14):2509-2519. https://doi.org/10. 1080/02626667.2016.1154149
- 79. Wang S, Huang GH, Lin QG, Li Z, Zhang H, Fan YR (2014) Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada: comparison of interpolation methods for precipitation distribution. Int J Climatol 34(14):3745-3751. https://doi.org/10.1002/joc.3941
- 80. Yu L, Leng G, Python A (2022) A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather Clim Extremes 36:100458. https:// doi.org/10.1016/j.wace.2022.100458
- 81. Zhang Q, Shi P, Singh VP, Fan K, Huang J (2017) Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China: spatial downscaling of TRMM-based precipitation data. Int J Climatol 37(10):3895-3909. https://doi.org/10. 1002/joc.4964
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-69eb1273-6d64-4425-a853-e8780f43cf9a