Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, iss. 4 | 1327--1332
Tytuł artykułu

A Modified Kerner Model to Predict the Thermal Expansion Coefficient of Multi-Phase Reinforced Composites Al6092/SiC/LAS

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a new supplementary formula was introduced to modify the Kerner model. This supplementary formula enable the Kerner model to predict the thermal expansion coefficient of multi-phase reinforced composites by normalization of the thermal expansion coefficient, bulk modulus, and shear modulus of the reinforcements. For comparison, the modified Kerner model as well as modified Schapery, the rule of mixtures, and Turner models were used to predict the thermal expansion coefficient of multi-phase reinforced composites 6092 Aluminum Alloy/silicon carbide/β-eucryptite. The results confirm the robustness of the modified Kerner model for predicting the thermal expansion coefficient of composites with multi-phase near-spherical inclusions. It may provide a fine selection to predict the thermal expansion coefficient of multi-phase reinforced metal matrix composites which cannot predict efficiently before.
Wydawca

Rocznik
Strony
1327--1332
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wzory
Twórcy
  • Hunan University of Technology, School of Packaging and Materials Engineering, Zhuzhou 412007, China
  • Hunan University of Technology, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Zhuzhou 412007, China
autor
  • Hunan University of Technology, School of Packaging and Materials Engineering, Zhuzhou 412007, China
autor
  • Hunan University of Technology, School of Packaging and Materials Engineering, Zhuzhou 412007, China, jhyun@163.com
  • Hunan University of Technology, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Zhuzhou 412007, China
Bibliografia
  • [1] M. Orrhede, R. Tolani, K. Salama, Res. Nondestr. Eval. 8, 23-37 (1996).
  • [2] R. Zare, H. Sharifi, M.R. Saeri, M. Tayebi, J. Alloys Compd. 801, 520-528 (2019).
  • [3] M. Esmati, H. Sharifi, M. Raesi, A. Atrian, A. Rajaee, J. Alloys Compd. 773, 503-510 (2019).
  • [4] M. Tayebi, M. Jozdani, M. Mirhadi, J. Alloys Compd. 809, 151753 (2019).
  • [5] C. Hsieh, W. Tuan, Mater. Sci. Eng. A 460, 453-458 (2007).
  • [6] P.S. Turner, J. Res. Natl. Bureau Stand. 37, 237-250 (1946).
  • [7] E. Kerner, Proc. Phys. Soc. Sect. B 69, 808 (1956).
  • [8] R.A. Schapery, J. Compos. Mater. 2, 380-404 (1968).
  • [9] S. Elomari, M. Skibo, A. Sundarrajan, H. Richards, Compos. Sci. Technol. 58, 369-376 (1998).
  • [10] S. Lemieux, S. Elomari, J. Nemes, M. Skibo, J. Mater. Sci. 33, 4381-4387 (1998).
  • [11] Q. Zhang, G. Wu, G. Chen, L. Jiang, B. Luan, Composites Part A 34, 1023-1027 (2003).
  • [12] G. Bai, Y. Zhang, J. Dai, L. Wang, X. Wang, J. Wang, M.J. Kim, X. Chen, H. Zhang, J. Alloys Compd. 794, 473-481 (2019).
  • [13] L. Yu, S. Jiang, F. Cao, H. Shen, L. Zhang, X. Gu, H. Song, J. Sun, Mater. 14, 4100 (2021).
  • [14] N.K. Sharma, R. Misra, S. Sharma, Int. J. Solids Struct. 102, 77-88 (2016).
  • [15] R.L. Poveda, S. Achar, N. Gupta, Jom 64, 1148-1157 (2012).
  • [16] M. Tayebi, M. Tayebi, M. Rajaee, V. Ghafarnia, A.M. Rizi, J. Alloys Compd. 853, 156794 (2021).
  • [17] l. Wang, Z. Xue, Y. Cui, K. Wang, Y. Qiao, W. Fei, Compos. Sci. Technol. 72, 1613-1617 (2012).
  • [18] C. Fan, Z. Hu, X. Chen, X. Zhou, L. Ou, J. Yang, Trans. Nonferrous Met. Soc. China 30, 40-47 (2020).
  • [19] Y. Jia, F. Cao, S. Scudino, P. Ma, H. Li, L. Yu, J. Eckert, J. Sun, Mater. Des. 57, 585-591 (2014).
  • [20] Z. Wei, P. Ma, H. Wang, C. Zou, S. Scudino, K. Song, K.G. Prashanth, W. Jiang, J. Eckert, Mater. Des. 65, 387-394 (2015).
  • [21] Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 11, 127-140 (1963).
  • [22] R. Arpon, J. Molina, R. Saravanan, C. Garcia-Cordovilla, E. Louis, J. Narciso, Acta Mater. 51, 3145-3156 (2003).
  • [23] M. Vetterli, R. Tavangar, L. Weber, A. Kelly, Scr. Mater. 64, 153-156 (2011).
  • [24] H. Holzer, D.C. Dunand, J. Mater. Sci. 14, 780-789 (1999).
  • [25] S. Zhang, Q. Hou, H. Jiang, J. Mater. Sci. 57, 1796-1809 (2022).
  • [26] O. Matvienko, T. Daneyko, A. Kovalevskaya, I. Khrustalyov, A. Zhukov, Vorozhtsov, Metals 11, 279 (2021).
  • [27] Z. Sun, Z. Tian, l. Weng, Y. Liu, J. Zhang, T. Fan, J. Appl. Phys. 127, 045101 (2020).
  • [28] X. Wang, J. Yang, P. Chi, E. Bahonar, M. Tayebi, J. Alloys Compd. 901, 163422 (2022).
  • [29] M.M. Benal, H. Shivanand, Mater. Sci. Eng. A 435, 745-749 (2006).
Uwagi
The authors would like to thank the National Engineering Center, Hunan University of Technology, China, for providing essential experimental apparatuses. The authors are grateful of National Natural Science Foundation of China (21978076), the science and technology innovation Program of
Hunan Province (2021RC4065), and the Key Projects of Hunan Provincial Department of Education (19A132).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-69e1afeb-e1f0-4205-b5cf-586b984788d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.