Warianty tytułu
Języki publikacji
Abstrakty
Decision trees and decision tree ensembles are popular machine learning methods, used for classification and regression. In this paper, an FPGA implementation of decision trees and tree ensembles for letter and digit recognition in Vivado High-Level Synthesis is presented. Two publicly available datasets were used at both training and testing stages. Different optimizations for tree code and tree node layout in memory are considered. Classification accuracy, throughput and resource usage for different training algorithms, tree depths and ensemble sizes are discussed. The correctness of the module’s operation was verified using C/RTL cosimulation and on a Zynq-7000 SoC device, using Xillybus IP core for data transfer between the processing system and the programmable logic.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
71--82
Opis fizyczny
Bibliogr. 17 poz., rys
Twórcy
autor
- AGH University of Science and Technology, Department of Automatics and Bioengineering Mickiewicza Ave., 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Department of Automatics and Bioengineering Mickiewicza Ave., 30, 30-059 Kraków, Poland
Bibliografia
- [1] Bache, K., Lichman, M. (2013). UCI machine learning repository
- [2] Bradski, G.R., Kaehler, A. (2008). Learning OpenCV. O’Reilly Media, Inc., first edition
- [3] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32
- [4] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). Classification and Regression Trees. Wadsworth
- [5] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., Zhang, Z. (2011). High-Level Synthesis for FPGAs: From Prototyping to Deployment, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 30(4), 473-491
- [6] Criminisi, A., Shotton, J., Konukoglu, E. (2011). Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi- Supervised Learning. Technical Report MSR-TR-2011-114, Microsoft Research
- [7] Frey, P.W., Slate, D.J. (1991). Letter recognition using Holland-style adaptive classifiers. Machine Learning, 6(2), 161-182
- [8] Geurts, P., Ernst, D., Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3-42
- [9] Ho, T.K. (1995). Random decision forests. In Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on, 1, 278-282
- [10] Ho, T.K. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(8), 832-844
- [11] Jiang, W., Prasanna, V.K. (2012). Scalable Packet Classification on FPGA. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 20(9), 1668-1680
- [12] Kaynak, C. (1995). Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition. Master’s thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University
- [13] Oberg, J., Eguro, K., Bittner, R., Forin, A. (2012). Random decision tree body part recognition using FPGAs. In Field Programmable Logic and Applications (FPL), 2012 22nd International Conference on, 330-337
- [14] Struharik, J.R. (2011). Implementing decision trees in hardware. In Intelligent Systems and Informatics (SISY), 2011 IEEE 9th International Symposium on, 41-46
- [15] Struharik, R., Vranjkovic, V., Vukobratovic, B. (2012). Ip cores for hardware evolution of decision trees. In Intelligent Systems and Informatics (SISY), 2012 IEEE 10th Jubilee International Symposium on, 407-412
- [16] Tian, J-F., Fu, Y., Xu, Y., Wang, J.L. (2005). Intrusion Detection Combining Multiple Decision Trees by Fuzzy logic. In Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT 2005. Sixth International Conference on, 256-258
- [17] Van Essen, B., Macaraeg, C., Gokhale, M., Prenger, R. (2012). Accelerating a Random Forest Classifier: Multi-Core, GP-GPU, or FPGA? In Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on, 232-239
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-69df3b83-fdc1-416f-8e1b-96120b05173e