Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 5 | 337--349
Tytuł artykułu

Application of Particle Filter in Path-loss Modelling

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the dynamic estimation method of the path loss exponent parameter in the function of the distance based on the conducted measurements. A specific feature of this solution is its suitability for distance estimation on devices which are characterised by a small amount of resources. The presented method allows to provide an acceptable precision of distance estimation while using a relatively small measurement set. For this purpose, real RSSI (Received Signal Strength Indicator) measurements were used and estimation of the path-loss exponent was performed with the use of a Bayesian particle filter. The article, apart from a detailed demonstration of the algorithms, presents the results of the sensitivity analysis of this method to change the number of inserted particles and of the repetitions of calculations needed to estimate the path loss exponent. Additionally, the results of the model stability study on the size change of the experimental dataset RSSI are presented. The properties and accuracy of the proposed method are verified based on a set of actual measurement data. All the obtained results indicate the utility of the Bayesian filtering method for effective estimation of the path loss exponent and confirm the possibility of using the described method in systems with a limited amount of computing resources.
Wydawca

Rocznik
Strony
337--349
Opis fizyczny
Bibliogr. 58 poz., fig, tab.
Twórcy
  • Department of Computer Science, Lublin University of Technology, u. Nadbystrzycka 36B, 20-618 Lublin, Poland, p.wojcicki@pollub.pl
  • Department of Computer Science, Lublin University of Technology, u. Nadbystrzycka 36B, 20-618 Lublin, Poland, t.zientarski@pollub.pl
  • Department of Computer Science, Lublin University of Technology, u. Nadbystrzycka 36B, 20-618 Lublin, Poland, s.przylucki@pollub.pl
Bibliografia
  • 1. Rappaport T.S. Wireless Communications: principles and practice. 2nd edition. Prentice Hall; 2002.
  • 2. Dargie W., Poellabauer C. Fundamentals of Wireless Sensor Networks Theory and Practice. John Wiley & Sons Ltd; 2010.
  • 3. Hightower J., Borriello G. Location Systems for Ubiquitous Computing. IEEE Computer Magazine 2001; 34(8): 57-
  • 4. Xu J., Liu W., Lang F., Zhang Y., Wang C. Distance measurement model based on RSSI in WSN. Wireless Sensor Network 2010; 2: 606-611.
  • 5. Chen K., Xu Z., Gong L. Research of the Distance Calculation Algorithm Based on RSSI. Advanced Materials Research 2012; 499: 464-468.
  • 6. Botta M., Simek M., Adaptive Distance Estimation Based on RSSI in 802.15.4 Network, Radioengineering 2013; 22: 1162-11
  • 7. Martinez K., Hart J.K., Ong, R. Environmental sensor networks, Computer 2004; 37(8): 50-56.
  • 8. Hartung S., Brosenne H., Hogrefe D. Practical RSSI long distance measurement evaluation in Wireless Sensor Networks. In: Proc. of IEEE Conference on Wireless Sensor, Kuching, Malaysia 2013, 1-6.
  • 9. Fang Z., Zhao Z., Guo P., Zhang Y.-G. Analysis of distance measurement based on RSSI. Chinese Journal of Sensors and Actuators 2007; 20(11): 2526-2530.
  • 10. Kurt S., Tavli B. Path-Loss Modeling for Wire omparative evaluations. IEEE Antennas and Propgation Magazine 2017; 59(1): 18-37.
  • 11. Malajner M., Benkic K., Planinsic P., Cucej Z. The Accuracy of Propagation Models for Distance Measurement between WSN Nodes. In: Proc. of 16th International Conference on Systems, Signals and Image Processing, Chalkida, Greece 2009, 1-4.
  • 12. Wojcicki P., Zientarski T., Charytanowicz M., Lukasik E. Estimation of the Path-Loss Exponent by Bayesian Filtering Method. Sensors 2021; 21: 1934-1945.
  • 13. Czerwinski D., Przylucki S., Wojcicki P., Sitkiewicz J. Path loss model for a wireless sensor network in different weather conditions. In: Proc. of 24th International Conference on Computer Networks, Lądek Zdrój, Poland 2017, 106-117.
  • 14. Egi Y. and Otero C. E. Machine-Learning and 3D Point-Cloud Based Signal Power Path Loss Model for the Deployment of Wireless Communication Systems, IEEE Access 2019, 7: 42507-42517.
  • 15. Salman N., Kemp A.H., Ghogho M. Low Complexity Joint Estimation of Location and Path-Loss Exponent. IEEE Wireless Communications Letters 2012; 1(4): 364-367.
  • 16. Wu R.H., Lee Y.H., Tseng H.W., Jan Y.G, Chuang M.H. Study of characteristics of RSSI signal. In: Proc. of IEEE International Conference on Industrial Technology, Chengdu, China 2008, 1-3.
  • 17. Singh A., Singh D., Kumar S. NRSSI: New proposed RSSI method for the distance measurement in WSNs. In: Proc. of 1st International Conference on Next Generation Computing Technologies, Dehradun, India 2015, 296-300.
  • 18. Zheng J., Wu C., Chu H., Xu Y. An Improved RSSI Measurement in Wireless Sensor Networks. Proceless Sensor Networks: A review of models and ia Engineering. 2011; 15: 876-880.
  • 19. Bose A., Foh C.H. A Practical Path Loss Model for Indoor WiFi Positioning Enhancement. In: Proc. Of 6th International Conference on Information, Communications & Signal Processing, Singapore 2007, 1-5.
  • 20. Tarrio P., Bernardos A.M., Casar J.R. An RSS Localization Method Based on Parametric Channel Models. In: Proc. of International Conference on Sensor Technologies and Applications, Valencia, Spain 2007, 265-270.
  • 21. Li X., Chen L., Wang J., Chu Z., Liu B. A Novel Method to Improve the Accuracy of the RSSI Techniques Based on RSSI-D. Journal of Networks 2014; 9: 3400-3406.
  • 22. Rodas J., Escudero C.J. Joint Estimation of Position and Channel Propagation Model Parameters in a Bluetooth Network. In: Proc. of IEEE International Conference on Communications Workshops, Dresden, Germany 2009, 1-5.
  • 23. Pinto B., Barreto R., Souto E. and Oliveira H. (2021). Robust RSSI-Based Indoor Positioning System Using K-Means Clustering and Bayesian Estimation, IEEE Sensors Journal 2021, 21(21): 24462-24470.
  • 24. Jianwu Z., Lu Z. Research on Distance Measurement Based on RSSI of ZigBee. In: Proc, of ISECS International Colloquium on Computing, Communication, Control, and Management, Sanya, China 2009, 210-212.
  • 25. Mohammed S.L., Techniques E.E. Distance Estimation Based on RSSI and Log-Normal Shadowing Models for ZigBee Wireless Sensor Network. Engineering and Technology Journal 2016; 34(15) Part (A): 2950-2959.
  • 26. Kaundal V., Sharma P., Prateek M. Wireless Sensor Node Localization based on LNSM and Hybrid TLBO- Unilateral technique for Outdoor Location. International Journal of Electronics and Telecomunications 2017; 63(4): 289-397.
  • 27. Li X. RSS-based Location Estimation with Unknown Pathloss Model. IEEE Transactions on Wireless Communications 2006; 5(12): 3626-3633.
  • 28. Kelner J.M., Kryk M., Lopatka J., Gajewski P. A Statistical Calibration Method of Propagation Prediction Model Based on Measurement Results. International Journal of Electronics and Telecommunications 2020; 66(1): 11-16.
  • 29. Yan X., Zhou P., Luo Q., Wang C., Ding J., Hu C. UAM-RDE: an uncertainty analysis method for RSSI-based distance estimation in wireless sensor networks. Neural Computing and Applications 2020; 32: 13701–13714.
  • 30. Liu Y., Li N., Wang D., Guan T., Wang W., Li J., Li N. Optimization Algorithm of RSSI Transmission Model for Distance Error Correction. Advances in Intelligent Information Hiding and Multimedia Signal Processing 2020: 27-36.
  • 31. Shang J., Cheng T., Sheng L., Shi H., Yue K. Application of generalized extended interpolation method in distance measurement based on RSSI. Chinese Journal of Sensors and Actuators 2016; 29: 1768-1772.
  • 32. Houssaini D.E., Mohamed Z., Khriji S., Besbes K., Kanoun O. Distance measurement correction based on feedback Filter for RSSI localisation technique in WSNs. International Journal of Space-Based and Situated Computing 2018; 8(3): 160-168.
  • 33. Ordonez D., Avalos D.H., Gomez E. High degree complete orthogonal polynomials to improve dis- tance prediction based on RSSI. RISTI – Revista Iberica de Sistemas e Tecnologias de Informacao 2019: 584-594.
  • 34. Krupanek B., Bogacz R. Localization technique of IoT Nodes Using Arti_cial Neural Networks (ANN). International Journal of Electronics and Telecommunications 2020; 66(4): 769-774.
  • 35. Yang F.E.I., Qingzhi D.U. RSSI ranging method based on BP neural network model. Chinese Journal of Radio Science 2018; 33: 195-201.
  • 36. Gadhgadhi A., Hachaichi Y., Zairi H. Distance Estimation using Polynomial Approximation and Neural Network Based on RSSI technique. In: Proc. of 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Sousse, Tunisia 2019, 24-29.
  • 37. Gualda D., Urena J., Garcia J.C., Garcia E., Ruiz D. RSSI distance estimation based on Genetic Programming. In: Proc. of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard, France 2013, 1-8.
  • 38. Miranda J., Abrishambaf R., Gomes T., Goncalves P., Cabral J., Tavares A., Monteiro J. Path loss exponent analysis in Wireless Sensor Networks: Experimental evaluation. In: Proc. of 11th IEEE International Conference on Industrial Informatics, Bochum, Germany 2013, 54-58.
  • 39. Dharmadhikari V., Pusalkar N., Ghare P. Path Loss Exponent Estimation for Wireless Sensor Node Positioning: Practical Approach. In: Proc. of IEEE International Conference on Advanced Networks and Telecommunications Systems, Indore, India 2018, 1-4.
  • 40. Pu C.C., Lim S.Y., Ooi P.C. Measurement arrange- ment for the estimation of path loss exponent in wireless sensor network. In: Proc. of 7th International Conference on Computing and Convergence Technology, Seoul, Korea (South) 2012, 807-812.
  • 41. Srinivasa S., Haenggi M. Path loss exponent estimation in large wireless networks. In: Proc. of Information Theory and Applications Workshop, San Diego, CA, USA 2009, 124-129.
  • 42. Zaarour N., Kandil N., Affes S., Hakem N. Path loss exponent estimation using connectivity information in wireless sensor network. In: Proc. of IEEE International Symposium on Antennas and Propagation, Fajardo, PR, USA 2016, 2069-2070.
  • 43. Chan F., Chan Y.T., Inkol R. Path loss exponent estimation and RSS localization using the linearizing variable constraint. In: Proc. of IEEE Military Communications Conference, Baltimore, MD, USA 2016, 225-229.
  • 44. Doucet A., Godsill S., Andrieu C. On sequential Monte Carlo sampling methods for Bayesian Filtering. Statistics and Computing 2000; 10: 197-208.
  • 45. Zafari F., Papapanagiotou I., Hacker T.J. A novel Bayesian Filtering based algorithm for RSSI-based indoor localization. In: Proc. of IEEE International Conference on Communications, Kansas City, MO, USA 2018, 1-7.
  • 46. Svecko J., Malajner M., Gleich D. Distance estimation using RSSI and particle Filter. ISA Transactions 2015; 55: 275-285.
  • 47. Cuesta F., Cordero M., Diaz L., Viguria A., Ollero A. A particle Filter-based method for ground-based WSN localization using an Aerial Robot. Computational Intelligence, 2015; 604: 143-158.
  • 48. Wang Z., Liu H., Xu S., Bu X., An J. A diffraction measurement model and particle filter tracking method for RSS-based DFL. IEEE Journal on Selected Areas in Communications 2015; 33(11): 2391-2403.
  • 49. Wu H., Mei X., Chen X., Li J., Wang J., Mohapatra P. A novel cooperative localization algorithm using enhanced particle filter technique in maritime search and rescue wireless sensor network. ISA Transactions 2018; 78: 39-46.
  • 50. Zhang X., Zhao L., Zhong W., Gu F. Performance Analysis of Resampling Algorithms of Parallel/Distributed Particle Filters, IEEE Access 2021; 9: 4711-4725.
  • 51. Kirkpatrick S., Stoll E. A Very Fast Shift-Register Sequence Random Number Generator. Journal of Computational Physics 1981; 40(21): 517-526.
  • 52. Hol J.D., Schon T.B., Gustafsson F. On Resampling Algorithms for Particle Filters. In: Proc. of IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge, UK 2006, 79-82.
  • 53. Barembruch S., Garivier A., Moulines E. On optimal sampling for particle Filtering in digital communication. In: Proc. of IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, Recife, Brazil 2008, 634-638.
  • 54. Kim M., Liang J., Lee J., Park J., Park B. Path loss measurements and modelling for indoor office scenario at 28 and 38 GHz. In: Proc. of the International Symposium on Antennas and Propagation, Okinawa, Japan 2016, 24-28.
  • 55. Ambroziak S.J., Katulski R.J. An empirical propagation model for mobile radio links in container terminal environment. IEEE Trans. Veh. Technol. 2013; 62: 4276-4287.
  • 56. Laskowski M., Ambroziak S.J., Correia L.M., Swider K. On the Usefulness of the Generalised Additive Model for Mean Path Loss Estimation in Body Area Networks. IEEE Access 2020; 8: 176873-176882.
  • 57. Mahasukhon P., Sharif H., Hempel M., Zhou T., Wang W., Ma T. Propagation path loss estimation using nonlinear multiregression approach. In: Proc. of the IEEE International Conference on Communications, Cape Town, South Africa 2019, 23-27.
  • 58. Nurminen H., Talvitie J., Ali-Loytty S., Muller P., Lohan E.S., Piche R., Renfors M. Statistical path loss parameter estimation and positioning using RSS measurements. In: Proc. of the Ubiquitous Positioning, Indoor Navigation, and Location Based Service, Helsinki, Finland 2012, 1-8.
Uwagi
Opracowanie reOpracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-69c2a82d-057f-4264-97b7-eee22e2fe861
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.