Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 3 | 253--271
Tytuł artykułu

The Impact of Pre-Crops on the Formation of Water Balance in Winter Wheat Agrocenosis and Soil Moisture in the Steppe Zone

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under climate change, the issue of selection and correction of crop cultivation systems in the zone of moisture deficit and risky farming to ensure profitability of production is still topical. In particular, crop rotations are a practice aimed at increasing resistance of soil systems to abiotic and biotic stresses in the zone of moisture deficit. Therefore, the purpose of the research is to identify spatio-temporal regularities of vegetative formation of water balance in winter wheat agrocenoses depending on a pre-crop according to the unified BBCH scale. Spatio-temporal processes of vegetation and water balance formation in winter wheat agrocenosis depending on a pre-crop according to the unified BBCH scale were examined on the basis of the data of decoded satellite image series of the spacecraft Sentinel and calculation of the NDWI and the NDVI values. The research was conducted in the natural-climatic conditions of the Steppe zone of Ukraine, in the territory of Yelanets district, Mykolaiv region, during the vegetative phase of winter wheat variety Driada 1: autumn 2021 and winter, spring and the beginning of summer 2022. It was established that activeness of water balance formation in winter wheat agrocenosis with pea as a pre-crop according to seasonal-phenological stages of plant growth is 3.0–9.0 times higher than with a grain crop (spring barley) and sunflower as pre-crops. In particular, with pea as a pre-crop, the NDVI vegetation of winter wheat plants is 1.6–1.7 times more intensive, the rate of moisture supply NDWI in the plant leaf at the macro-stages BBCH 10–61 is 1.54 and 1.82 times higher, productivity is 1.43–1.56 times higher. We observed a 30.5–34.3% reduction in water consumption for the formation of a ton of winter wheat grain with pea as a pre-crop in comparison with other pre-crops that resulted in an increase in productive moisture reserves at the end of vegetation in a meter soil layer by 20%. It was established that using pea as a pre-crop has economic and environmental benefits that manifest themselves in increasing resistance of soil systems, a reduction in environmental pollution and a rise in profitability of production.
Wydawca

Rocznik
Strony
253--271
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Kherson State Agrarian and Economic University, Stritens’ka str. 23, Kherson, 73006, Ukraine, pichuravitalii@gmail.com
  • Kherson State Agrarian and Economic University, Stritens’ka str. 23, Kherson, 73006, Ukraine
  • Mykolayiv National Agrarian University, George Gongadze str. 9, Mykolayiv, 54020, Ukraine, jdomar1981@gmail.com
  • Mykolayiv National Agrarian University, George Gongadze str. 9, Mykolayiv, 54020, Ukraine, nvnikonchuk@mnau.edu.ua
  • Mykolayiv National Agrarian University, George Gongadze str. 9, Mykolayiv, 54020, Ukraine, samoilenko@mnau.edu.ua
Bibliografia
  • 1. Albers H., Gornott C. & Hüttel S. (2017) How do inputs and weather drive wheat yield volatility? The example of Germany. Food Policy, 70, 50-61. doi: 10.1016/j.foodpol.2017.05.001
  • 2. Anderegg L.D.L., Berner L.T., Badgley G., Sethi M.L., Law B.E. & Lambers, J. (2018) Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21, 734–744. doi: 10.1111/ele.12945
  • 3. Asmamaw D.K., Janssens P., Dessie M., Tilahun S.A., Adgo E., Nyssen J., Walraevens K., Assaye H., Yenehun A., Nigate F. & Cornelis, W.M. (2023) Effect of deficit irrigation and soil fertility management on wheat production and water productivity in the Upper Blue Nile Basin, Ethiopia. Agricultural Water Management, 277. https://doi.org/10.1016/j. agwat.2022.108077
  • 4. Bennett A.J., Bending G.D., Chandler D., Hilton S. & Mills P. (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biological Reviews, 87, 52-71. doi: 10.1111/j.1469-185X.2011.00184.x
  • 5. Berti G. & Mulligan C. (2016) Competitiveness of small farms and innovative food supply chains: the role of food hubs in creating sustainable regional and local food systems. Sustainability, 8, 616. doi: 10.3390/su8070616
  • 6. Berzsenyi Z., Győrffy B. & Lap D. (2000) Effect of crop rotation and fertilization on maize and wheat yields and yield stability in a long-term experiment. European Journal of Agronomy, 13, 225-244. doi: 10.1016/S1161-0301(00)00076-9
  • 7. Beyer M., Ahmad R., Yang B. & RodríguezBocca P. (2023) Deep spatial-temporal graph modeling for efficient NDVI forecasting. Smart Agricultural Technology, 4, 100172. doi: 10.1016/j. atech.2023.100172
  • 8. Beznitska N.V. (2017). Modeling of soil and climatic potential of agricultural lands of the Kherson region using GIS-technology. Herald of the National University of Water and Environmental Engineering, 4 (76), 31-43. (in Ukrainian)
  • 9. Breus D. & Yevtushenko O. (2022) Modeling of trace elements and heavy metals content in the steppe soils of Ukraine. Journal of Ecological Engineering, 23(2), 159–165. doi: 10.12911/22998993/144391
  • 10. Breus D. & Yevtushenko O. (2023) Agroecological assessment of suitability of the steppe soils of ukraine for ecological farming. Journal of Ecological Engineering, 24(5), 229–236. doi: 10.12911/22998993/161761
  • 11. Breus D.S. & Skok S.V. (2021) Spatial modelling of agro-ecological condition of soils in steppe zone of Ukraine. Indian Journal of Ecology, 48(3), 627–633.
  • 12. Bruns H.A. (2012) Concepts in crop rotations. Agricultural Science, Intech Publishers, Rijeka, Croatia, 25-48.
  • 13. Chen C.-Sh., Noorizadegan A., Young, D.L. & Chen C.S. (2023). On the selection of a better radial basis function and its shape parameter in interpolation problems. Applied Mathematics and Computation, 442, 127713. doi:10.1016/j.amc.2022.127713
  • 14. Claassen R., Bowman M., McFadden J., Smith D. & Wallander S. (2018) Tillage intensity and conservation cropping in the United States. United States Department of Agriculture. Economic Information Bulletin Number, 197, 21.
  • 15. Cui E., Weng E., Yan, E. & Xia J. (2020) Robust leaf trait relationships across species under global environmental changes. Nature Communications, 11, 2999. doi: 10.1038/s41467-020-16839-9
  • 16. Deans R.M., Brodribb T.J., Busch F.A. & Farquhar G.D. (2020) Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nature Plants, 6, 1116–1125. doi: 10.1038/s41477-020-00760-6
  • 17. Domaratskiy E.O., Zhuykov O.G. & Ivaniv M.O. (2018) Influence of Sowing Periods and Seeding Rates on Yield of Grain Sorghum Hybrids under Regional Climatic Transformations. Indian Journal of Ecology, 45 (4), 785-789.
  • 18. Domaratskiy Ye., Bazaliy V., Dobrovol’skiy A., Pichura V. & Kozlova O. (2022) Influence of eco-safe growth-regulating substances on the phytosanitary state of agrocenoses of wheat varieties of various types of development in non-irrigated conditions of the steppe zone. Journal of Ecological Engineering, 23(8), 299–308. doi: 10.12911/22998993/150865
  • 19. Domaratskiy Ye., Berdnikova O., Bazaliy V., Shcherbakov V., Gamayunova V., Larchenko O., Domaratskiy A. & Boychuk I. (2019) Dependence of winter wheat yielding capacity on mineral nutrition in irrigation conditions of southern Steppe of Ukraine. Indian Journal of Ecology, 46 (3), 594-598.
  • 20. Doughty C.E., Santos-Andrade P.E., Shenkin A., Goldsmith G.R., Bentley L.P., Blonder B., Díaz S., Salinas N., Enquist B.J., Martin R.E., Asner G.P. & Malhi Ya. (2018) Tropical forest leaves may darken in response to climate change. Nature Ecology & Evolution, 2, 1918–1924.
  • 21. Dudiak N., Pichura V., Potravka L. & Stratichuk N. (2021) Environmental and economic effects of water and deflation destruction of steppe soil in Ukraine. Journal of Water and Land Development, 50, 10–26. doi: 10.24425/jwld.2021.138156
  • 22. Dudiak N.V., Pichura V.I., Potravka L.A. & Stroganov A.A. (2020) Spatial modeling of the effects of deflation destruction of the steppe soils of Ukraine. Journal of Ecological Engineering, 21 (2), 166–177. doi: 10.12911/22998993/116321
  • 23. Dudiak N.V., Potravka L.A. & Stroganov A.A. (2019) Soil and climatic bonitation of agricultural lands of the steppe zone of Ukraine. Indian Journal of Ecology, 46(3), 534–540.
  • 24. Essaadia A., Abdellah A., Ahmed A., Abdelouahed F. & Kamal, E. (2022) The normalized difference vegetation index (NDVI) of the Zatvalley, Marrakech: comparison and dynamics. Heliyon, 8(12), e12204. doi: 10.1016/j.heliyon.2022.e12204
  • 25. Fang Ch., Song X., Ye J.-Sh., Yuan Zi-Q., Agathokleous E., Feng Zh. & Li F.-M. (2023) Enhanced soil water recovery and crop yield following conversion of 9-year-old leguminous pastures into croplands. Agricultural Water Management, 279, 108189. https://doi.org/10.1016/j. agwat.2023.108189
  • 26. Firn J., McGree J.M., Harvey E. et al. (2019) Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology & Evolution, 3, 400–406. doi: 10.1038/ s41559-018-0790-1
  • 27. Hufnagel J., Reckling M. & Ewert F. (2020) Diverse approaches to crop diversification in agricultural research. Agronomy for Sustainable Development, 40 (2), 14. doi: 10.1007/s13593-020-00617-4
  • 28. Khakbazan M., Mohr R.M., Huang J., Xie R., Volkmar K.M., Tomasiewicz D.J., Moulin A.P., Derksen D.A., Irvine B.R., McLaren D.L. & Nelson A. (2019) Effects of crop rotation on energy use efficiency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res, 195, 104357
  • 29. Knapp S. & Heijden M.G. (2018) A global metaanalysis of yield stability in organic and conservation agriculture. Nature Communications, 9, 1-9.
  • 30. Korkhova M., Panfilova A., Domaratskiy Ye. & Smirnova I. (2023) Productivity of winter wheat (T. aestivum, T. durum, T. spelta) depending on varietal characteristics in the context of climate change. Ecological Engineering & Environmental Technology, 24(4), 236–244. doi: 10.12912/27197050/163124
  • 31. Li J.X., Huang L.D., Zhang J., Coulter J.A., Li L.L. & Gan Y.T. (2019a) Diversifying crop rotation improves system robustness. Agronomy for Sustainable Development, 39. doi: 10.1007/ s13593-019-0584-0
  • 32. Li Y., Li Z., Cui S., Chang S.X., Jia C. & Zhang Q. (2019b) A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agricultural Meteorology, 268, 136-145.
  • 33. Medida S.K., Rani P.P., Kumar G.V.S., Sireesha P.V.G., Kranthi K.C., Vinusha V., Sneha L., Naik B.S.S.S., Pramanick B., Brestic M., Gaber A. & Hossain A. (2023) Detection of water deficit conditions in different soils by comparative analysis of standard precipitation index and normalized difference vegetation index. Heliyon, 9(4), e15093. https://doi.org/10.1016/j.heliyon.2023.e15093
  • 34. Mu L., Su K., Zhou T. & Yang H. (2023) Yield performance, land and water use, economic profit of irrigated spring wheat/alfalfa intercropping in the inland arid area of northwestern China. Field Crops Research, 303, 109116. https://doi.org/10.1016/j. fcr.2023.109116
  • 35. Neugschwandtner R.W. & Kaul H.-P. (2015) Nitrogen uptake, use and utilization efficiency by oatpea intercrops. Field Crops Research, 179, 113-119. https://doi.org/10.1016/j.fcr.2015.04.018
  • 36. Pichura V., Domaratskiy Ye., Potravka L., Biloshkurenko O. &Dobrovol’skiy A. (2023a) Application of the research on spatio-temporal differentiation of a vegetation index in evaluating sunflower hybrid plasticity and growth-regulators in the steppe zone of Ukraine. Journal of Ecological Engineering, 24(6), 144-165. doi: 10.12911/22998993/162782
  • 37. Pichura V., Potravka L., Stratichuk N. & Drobitko A. (2023b) Space-time modeling steppe soil fertility using geo-information systems and neuro-technologies. Bulgarian Journal of Agricultural Science, 29(1), 182-197.
  • 38. Pichura V., Potravka L., Domaratskiy Ye. (2023c) Patterns of winter wheat productivity formation depending on its predecessor in accordance with BBCH scale in the steppe zone of Ukraine. Bulletin of the National University of Water Management and Nature Management. 3 (103). 167-189. (in Ukrainian)
  • 39. Pichura V., Potravka L., Vdovenko N., Biloshkurenko O., Stratichuk N. & Baysha K. (2022) Changes in climate and bioclimatic potential in the steppe zone of Ukraine. Journal of Ecological Engineering, 23 (12), 189-202. doi: 10.12911/22998993/154844
  • 40. Pichura V., Potravka L., Dudiak N., Stroganov A. & Dyudyaeva O. (2021a) Spatial differentiation of regulatory monetary valuation of agricultural land in conditions of widespread irrigation of steppe soils. Journal of Water and Land Development, 48 (I–III), 182–196. doi: 10.24425/jwld.2021.136161
  • 41. Pichura V., Potravka L., Dudiak N. & Vdovenko N. (2021b) Space-time modeling of climate change and bioclimatic potential of steppe soils. Indian Journal of Ecology, 48(3), 671-680.
  • 42. Ray D.K., Gerber J.S., MacDonald G.K. & West P.C. (2015) Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1-9.
  • 43. Reckling M., Bergkvist G., Watson C.A., Stoddard F.L., Zander P.M., Walker R.L., Pristeri A., Toncea I. & Bachinger J. (2016) Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Frontiers Plant Science, 7, 669. doi: 10.3389/fpls.2016.00669
  • 44. Reichstein M., Bahn M., Mahecha M.D., Kattge J. & Baldocchi D.D. (2014) Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA, 111, 13697–13702.
  • 45. Rozendaal D. M. A., Hurtado V. H. & Poorter L. (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207–216. doi: 10.1111/j.1365-2435.2006.01105.x
  • 46. Sanford G.R., Jackson R.D., Booth E.G., Hedtcke J.L. & Picasso V. (2021) Perenniality and diversity drive output stability and resilience in a 26-year cropping systems experiment. Field Crops Research, 263, 108071. doi: 10.1016/j.fcr.2021.108071
  • 47. Sehgal A., Singh G., Quintana N., Kaur G., Ebelhar W., Nelson K.A. & Dhillon J. (2023) Long-term crop rotation affects crop yield and economic returns in humid subtropical climate. Field Crops Research, 298, 108952. doi: 10.1016/j.fcr.2023.108952
  • 48. Senbeta A.F. & Worku W. (2023) Ethiopia’s wheat production pathways to self-sufficiency through land area expansion, irrigation advance, and yield gap closure. Heliyon, 9 (10), e20720. https://doi. org/10.1016/j.heliyon.2023.e20720
  • 49. Siddique K.H.M., Li X. & Gruber K. (2021) Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nature Plants, 7 (2), 116–122. doi: 10.1038/s41477-021-00850-z
  • 50. Skok S., Breus D. & Almashova V. (2023) Assessment of the effect of biological growth-regulating preparations on the yield of agricultural crops under the conditions of steppe zone. Journal of Ecological Engineering, 24(7), 135–144. doi: 10.12911/22998993/163494
  • 51. Stetina S.R., Young L.D., Pettigrew W.T. & Bruns H.A. (2007) Effect of corn-cotton rotations on reniform nematode populations and crop yield. Nematropica, 37, 237-248.
  • 52. Taloor A.K., Manhas D.S. & Kothyari G.Ch. (2021) Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051. doi: 10.1016/j.acags.2020.100051
  • 53. USDA-ERS 2012. Agricultural resources and environmental indicators. Economic Information Bulletin, 98. http://www.ers.usda.gov/webdocs/publications/eib98/30351_eib98.pdf
  • 54. Wang Z., Huang H., Wang H., Peñuelas J., Sardans J., Niinemets Ü., Niklas K.J., Li Ya., Xie J. & Wright I.J. (2022) Leaf water content contributes to global leaf trait relationships. Nature Communications, 13, 5525. doi: 10.1038/s41467-022-32784-1
  • 55. YangD., Li S., Wu M., Yang H., Zhang W., Chen J., Wang Ch., Huang S., Zhang R. & Zhang Yu. (2023) Drip irrigation improves spring wheat water productivity by reducing leaf area while increasing yield. European Journal of Agronomy, 143, 126710. https://doi.org/10.1016/j.eja.2022.126710
  • 56. Yang X.L., Wang G.Y., Chen Y.Q., Sui P., Pacenka S., Steenhuis T.S. & Siddique K.H.M. (2022) Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system – A 16-year field study in North China Plain. Field Crops Research, 275, 108364. doi: https://doi. org/10.1016/j.fcr.2021.108364
  • 57. Yang Ya., Wang H., Harrison S.P., Prentice I.C., Wright I.J., Peng Ch. & Lin G. (2019) Quantifying leaf-trait covariation and its controls across climates and biomes. New Physiologist, 221, 155–168. https://doi.org/10.1111/nph.15422
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-69bafc75-c81f-48bb-8834-016bd2ab91b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.