Czasopismo
2019
|
Vol. 15, no. 2
|
art. no. 20190023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The structural transition from the globular to the amyloid form of proteins requires aggregation-promoting conditions. The protein example of this category is acylphosphatase from the hyperthermophile Sulfolobus solfataricus. This protein represents a structure with a well-defined hydrophobic core. This is why the complexation (including oligomerization) of this protein is of low probability. The chain fragment participating in aggregation in comparison to the status with respect to the fuzzy oil drop model is discussed in this paper.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 20190023
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
autor
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Lazarza 16, 31-530 Krakow, Poland, mywisnio@cyf-kr.edu.pl
autor
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
autor
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
Bibliografia
- [1] Corazza A, Rosano C, Pagano K, Alverdi V, Esposito G, Capanni C, et al. Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins 2006;62:64-79.
- [2] Bemporad F, Ramazzotti M. From the evolution of protein sequences able to resist self-assembly to the prediction of aggregation propensity. In: Sandal M, editor. International review of cell and molecular biology. Netherlands: Elsevier, 2017:1-48.
- [3] Bemporad F, DeSimone A, Chiti F, Dobson CM. Characterizing intermolecular interactions that initiate native-like protein aggregation. Biophys J 2012;102:2595-604.
- [4] Thoma R, Hennig M, Sterner R, Kirschner K. Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Structure 2000;15:265-76.
- [5] Dams T, Ostendorp R, Ott M, Rutkat K, Jaenicke R. Tetrameric and octameric lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Structure and stability of the two active forms. Eur J Biochem 1996;240:274-9.
- [6] Kohlhoff M, Dahm A, Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett 1996;383:245-50.
- [7] Beaucamp N, Hofmann A, Kellerer B, Jaenicke R. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase. Protein Sci 1997;6:2159-65.
- [8] Bell GS, Russell RJ, Kohlhoff M, Hensel R, Danson MJ, Hough DW, et al. Preliminary crystallographic studies of triosephosphate isomerase (TIM) from the hyperthermophilic Archaeon Pyrococcus woesei. Acta Crystallogr D Biol Crystallogr 1998;54:1419-21.
- [9] Walden H, Bell GS, Russell RJ, Siebers B, Hensel R, Taylor GL. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol 2001;306:745-57.
- [10] Tanaka H, Chinami M, Mizushima T, Ogasahara K, Ota M, Tsukihara T, et al. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant. J Biochem 2001;130:107-18.
- [11] Jaenicke R, Schurig H, Beaucamp N, Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem 1996;48:181-269.
- [12] Rees DC. Crystallographic analyses of hyperthermophilic proteins. Methods Enzymol 2001;334:423-37.
- [13] Ishikawa K, Matsui I, Payan F, Cambillau C, Ishida H, Kawarabayasi Y, et al. A hyperthermostable D-ribose-5-phosphate isomerase from Pyrococcus horikoshiicharacterization and three-dimensional structure. Structure 2002;10:877-86.
- [14] Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, et al. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins 1999;37:441-53.
- [15] Jaenicke R, Böhm G. The stability of proteins in extreme environments. Curr Opin Struct Biol 1998;8:738-48.
- [16] Legrain C, Villeret V, Roovers M, Tricot C, Clantin B, Van Beeumen J, et al. Ornithine carbamoyltransferase from Pyrococcus furiosus. Methods Enzymol 2001;331:227-35.
- [17] Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL. The crystal structure of citrate synthase from the hyperthermophilic Archaeon Pyrococcus furiosus at 1.9 A resolution. Biochemistry 1997;36:9983-94.
- [18] Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, et al. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 1995;3:1147-58.
- [19] Auerbach G, Ostendorp R, Prade L, Korndörfer I, Dams T, Huber R, et al. Lactate dehydrogenase from the hyperthermophilic bacterium thermotoga maritima: the crystal structure at 2.1 A resolution reveals strategies for intrinsic protein stabilization. Structure 1998;6:769-81.
- [20] Arnott MA, Michael RA, Thompson CR, Hough DW, Danson MJ. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J Mol Biol 2000;304:657-68.
- [21] Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R. X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 2001;306:1099-114.
- [22] Lim JH, Yu YG, Han YS, Cho S, Ahn BY, Kim SH, et al. The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. J Mol Biol 1997;270:259-74.
- [23] Backmann J, Schäfer G. Thermodynamic analysis of hyperthermostable oligomeric proteins. Methods Enzymol 2001;334:328-42.
- [24] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235-42.
- [25] Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, et al. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 2017;45:D289-95.
- [26] Konieczny L, Brylinski M, Roterman I. Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 2006;6:15-22.
- [27] Kalinowska B, Banach M, Konieczny L, Roterman I. Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 2015;17:1477-507.
- [28] Gadzała M, Dułak D, Kalinowska B, Baster Z, Bryliński M, Konieczny L, et al. The aqueous environment as an active participant in the protein folding process. J Mol Graph Model 2019;87:227-39.
- [29] Kalinowska B, Banach M, Wiśniowski Z, Konieczny L, Roterman I. Is the hydrophobic core a universal structural element in proteins? J Mol Model 2017;23:205.
- [30] Dygut J, Kalinowska B, Banach M, Piwowar M, Konieczny L, Roterman I. Structural interface forms and their involvement in stabilization of multidomain proteins or protein complexes. Int J Mol Sci 2016;17:1741.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-69b65b54-51b0-4ecf-85cf-0a127e30d633