Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | nr 11 | 396--399
Tytuł artykułu

Corrosion inhibition of carbon steel (K-55) in CO2-saturated 0.5 M KCl solution by polyacrylamide

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Inhibitujący wpływ poli(akryloamidu) na korozję stali K55 w 0,5 M roztworze KC l nasyconym CO2
Języki publikacji
EN
Abstrakty
EN
Polyacrylamide (PAM) was used to investigate the inhibition efficiency on corrosion of carbon steel (K-55) in 0.5 M KCl solution with CO2 through AC impedance, polarization curves, and SEM techniques under static and hydrodynamic conditions. The electrochemical experimental results indicated that carbon steel showed active dissolution behaviour in the absence and the presence of the inhibitor PAM. However, the Nyquist diagrams showed increase in RP values in the presence of inhibitor under static and hydrodynamic conditions, thus increasing inhibition efficiency. Potentiodynamic curves suggested that the inhibitor is mixed type in nature. SEM results showed that PAM was able to influence the flow dynamic properties of solution by decreasing the friction (wall shear-stresses) between the metal surface and flowing media, thus reducing the risk of flow induced localized corrosion.
PL
W publikacji zawarto wyniki badań skuteczności antykorozyjnej inhibitora poliakrylamidowego (PAM) zastosowanego do hamowania procesów korozyjnych stali typu K55 w środowisku 0,5M KCl z obecnością CO2. Badania elektrochemiczne prowadzono w warunkach stacjonarnych oraz w warunkach przepływu z użyciem technik impedancyjnych i polaryzacyjnych. Obserwacje powierzchni próbki prowadzono z użyciem techniki elektronowej SEM. Wyniki badań wskazują, że stal K55 wykazała aktywność elektrochemiczną zarówno przy nieobecności jak i w obecności inhibitora PAM. Dalsze badania impedancyjne wykazały jednak, że w obecności inhibitora następuje wzrost wartości Rp badanej próbki, zarówno w warunkach stacjonarnych jak i hydrodynamicznych. To wskazuje na skuteczność hamowania korozji przez inhibitor typu PAM. Krzywe polaryzacji natomiast sugerują katodowo-anodowy charakter inhibitora. Z kolei obserwacje SEM wykazały wpływ inhibitora na własności hydrodynamiczne roztworu poprzez zmniejszenie tarcia pomiędzy powierzchnią metalu i przepływającym medium, redukując tym samym ryzyko powstania ognisk korozji wywołanej przepływem.
Wydawca

Rocznik
Tom
Strony
396--399
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland, gpalumbo@agh.edu.pl
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 41, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 41, 02-507 Warsaw, Poland
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
Bibliografia
  • 1. X. Jiang, Y. G. Zheng, and W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution. Corrosion Science, 2005. 47(11): p. 2636-2658.
  • 2. J. Fink, Petroleum engineer’s guide to oil field chemicals and fluids, ed. s. Edition. 2012, Oxford, UK: Elsevier.
  • 3. J. Fink, Hydraulic fracturing chemicals and fluids technology, ed. s. Edtion. 2013, Oxford, UK: Elsevier.
  • 4. K. F. Khaled, The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochimica Acta, 2003. 48(17): p. 2493-2503.
  • 5. E .E. Oguzie, Y. Li, and F. H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. Journal of Colloid and Interface Science, 2007. 310(1): p. 90-98.
  • 6. M. Finšgar, and J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corrosion Science, 2014. 86(0): p. 17-41.
  • 7. S.A. Ali, M.T. Saeed, and S.U. Rahman, The isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic medium. Corrosion Science, 2003. 45(2): p. 253-266.
  • 8. H. Amar et al., Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media. Corrosion Science, 2007. 49(7): p. 2936-2945.
  • 9. S. Rajendran, B. V. Apparao, and N. Palaniswamy, Synergistic and antagonistic effects existing among polyacrylamide, phenyl phosphonate and Zn2+ on the inhibition of corrosion of mild steel in a neutral aqueous environment. Electrochimica Acta, 1998. 44(2–3): p. 533-537.
  • 10. T. Grchev et al., Adsorption of polyacrylamide on gold and iron from acidic aqueous solutions. Electrochimica Acta, 1991. 36(8): p. 1315-1323.
  • 11. H. Ashassi-Sorkhabi and E. Asghari, Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a ”green” inhibitor. Electrochimica Acta, 2008. 54(2): p. 162-167.
  • 12. H. Ashassi-Sorkhabi. and E. Asghari, Influence of flow on the corrosion inhibition of St52-3 type steel by potassium hydrogen-phosphate. Corrosion Science, 2009. 51(8): p. 1828-1835.
  • 13. G. Schmitt, Drag reduction by corrosion inhibitors – A neglected option for mitigation of flow induced localized corrosion. Materials and Corrosion, 2001. 52(5): p. 329-343.
  • 14. A .P. Bunger, J. McLennan, and R. Jeffrey, Effective and sustainable hydraulic fracturing. 2013, Rijeka, Croatia: InTech.
  • 15. F. R. Spellman, Environmental impacts of hydraulic fracturing. 2013, Florida, USA: CRC press.
  • 16. A.A. Khadom, and A.A. Abdul-Hadi, Performance of polyacrylamide as drag reduction polymer of crude petroleum flow. Ain Shams Engineering Journal, 2014. 5(3): p. 861-865.
  • 17. Y. Sun et al., Experimental study of friction reducer flows in microfracture. Fuel, 2014. 131(0): p. 28-35.
  • 18. A. Abubakar et al., Roles of drag reducing polymers in single- and multi-phase flows. Chemical Engineering Research and Design, 2014. 92(11): p. 2153-2181.
  • 19. T. Shanthi and S. Rajendran, Influence of Polyacrylamide on Corrosion Resistance of Mild Steel Simulated Concrete Pore Solution Prepared In Well Water. Journal of Applied Chemistry, 2013. Volume 5(Issue 6): p. 25-29
  • 20. N. Manimaran et al., Corrosion Inhibition of Carbon Steel by Polyacrylamide. Res. J. Chem. Sci., 2012. 2: p. 52-57.
  • 21. S. A. Umoren, Y. Li, and F. H. Wang, Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions. Corrosion Science, 2010. 52(5): p. 1777-1786.
  • 22. V. Srivastava, S. Banerjee, and M. M. Singh, Inhibitive effect of polyacrylamide grafted with fenugreek mucilage on corrosion of mild steel in 0.5 M H2SO4 at 35°C. Journal of Applied Polymer Science, 2009. 116(2): p. 810-816.
  • 23. P. Roy et al., Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corrosion Science, 2014. 88(0): p. 246-253.
  • 24. S. A. Umoren and I. B. Obot, Polyvinylpyrollidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium. Surface Review and Letters, 2008. 15(03): p. 277-286.
  • 25. S.A. Umoren and E.E. Ebenso, Blends of polyvinyl pyrrolidone and polyacrylamide as corrosion inhibitors for aluminium in acidic medium. Indian Journal of Chemical Technology, 2008. 15: p. 355-363.
  • 26. S. Banerjee, V. Srivastava, and M.M. Singh, Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium. Corrosion Science, 2012. 59(0): p. 35-41.
  • 27. W. T. Stringfellow et al., Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. J Hazard Mater, 2014. 275(0): p. 37-54.
  • 28. Q. Wen et al., Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. J Hazard Mater, 2010. 175(1-3): p. 955-9.
  • 29. L. Liu et al., Microbial degradation of polyacrylamide by aerobic granules. Environ Technol, 2012. 33(7-9): p. 1049-54.
  • 30. S. Ghareba and S. Omanovic, The effect of electrolyte flow on the performance of 12-aminododecanoic acid as a carbon steel corrosion inhibitor in CO2-saturated hydrochloric acid. Corrosion Science, 2011. 53(11): p. 3805-3812.
  • 31. C. Wang, A. Neville, and S. Ramachandran, Understanding Inhibitor Action on Components of Erosion, Corrosion and their Interactions in CO2-Containing Slurries. Society of Petroleum Engineers.
  • 32. G. Palumbo, et al., Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. Journal of Solid State Electrochemistry, 2014. 18(11): p. 2933-2945.
  • 33. H. H. Hassan, E. Abdelghani and M. A. Amin, Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS studies. Electrochimica Acta, 2007. 52(22): p. 6359-6366.
  • 34. R. Solmaz et al., Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta, 2008. 53(20): p. 5941-5952.
  • 35. S. Şafak et al., Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corrosion Science, 2012. 54: p. 251-259.
  • 36. S. R. Deshmukh and R. P. Singh, Drag reduction effectiveness, shear stability and biodegradation resistance of guargum-based graft copolymers. Journal of Applied Polymer Science, 1987. 33(6): p. 1963-1975.
  • 37. J. L. Lumley, Drag reduction by additives. Annu. Rev. Fluid Mech, 1969. 1: p. 367-384.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-692ed08a-7c6d-44c2-96c4-45d5a821a884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.