Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 67 | 65--79
Tytuł artykułu

Some generalizations of nearly I-continuous multifunctions in bitopological spaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (X, τ1, τ2, I) be an ideal bitopological space. Recently, many generalizations of open sets in (X, τ1, τ2, I) are introduced and investigated. By using these sets, we introduce a unified form of several generalizations of nearly continuous multifunctions on ideal bitopological spaces.
Wydawca

Rocznik
Tom
Strony
65--79
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan, t.noiri@nifty.com
  • Department of Mathematics, University Vasile Alecsandri of Bacǎu, 600 115-Bacǎu, Rumania, vpopa@ub.ro
Bibliografia
  • [1] Akdag M., On upper and lower I-continuous multifunctions, Far East J. Math. Sci., 25 (2007), 48-57.
  • [2] Akdag M., Canan S., Upper and lower semi-I-continuous multifunctions, J. Adv. Res. Pure Math., 6 (2014), 78-88.
  • [3] Arivazhagi C., Rajesh N., Nearly I-continuous multifunctions, Bol. Soc. Paran. Mat., 37 (2019), 33-38.
  • [4] Boonpok C., Viriyapong C., Thongmoon M., On upper and lower (τ1, τ2)-precontinuous multifunctions, J. Math. Computer Sci., 18 (2018), 282-293.
  • [5] Caldas M., Jafari S., Rajesh N., Preopen sets in ideal bitopological spaces, Bol. Soc. Paran. Mat. (3), 29(2) (2011), 61-68.
  • [6] Caldas M., Jafari S., Rajesh N., Semiopen sets in ideal bitopological spaces, An. Univ. Sci. Budapest. Math., (to appear).
  • [7] Ekici E., Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72(2003), 229-235.
  • [8] Ekici E., Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175-186.
  • [9] El-Maghrabi A. I., Caldas M., Jafari S., Latif R. M., Nasef A., Rajesh N., Shanthi S., Properties of ideal bitopological α-open sets, Sci. Stud. Res. Ser. Math. Inform., 27(2) (2017), 15-36.
  • [10] Ewert J., Lipski T., On s-quasi-continuous multivalued maps, Univ. u. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 20 (1990), 167-183.
  • [11] Gentry K. R., Hoyle H. B., C-continuous functions, Yokohama Math. J., 18 (1970), 71-76.
  • [12] Janković D., Hamlett T. R., New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
  • [13] Jafari S., Thivagar M. L., Ponmani S. A., (1, 2)α-open sets based on bitopological separation axioms, Soochow J. Math., 33(3) (2007), 375-381.
  • [14] Kuratowski K., Topology, Vol. I, Acadmic Press, New York, 1966.
  • [15] Maki H., Rao‘ C. K., Nagoor Gani A., On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17-29.
  • [16] Neubrunn T., C-continuity and closed graphs, Časopis Pěst. Mat., 110 (1985), 172-178.
  • [17] Noiri T., N-closed sets and some separation axioms, Ann. Soc. Sci. Bruxelles, 88 (1974), 195-199.
  • [18] Noiri T., Ergun N., Notes on N-continuous functions, Res. Rep. Yatsushiro Coll. Tech., 11 (1989), 65-68.
  • [19] Noiri T., Popa V., On upper and lower M-continuous multifunctions, Filomat, 14 (2000), 73-86.
  • [20] Noiri T., Popa V., A generalization of nearly continuous multifunctions, Ann. Univ. Sci. Budapest., 50 (2007), 59-74.
  • [21] Noiri T., Popa V., Some forms of open sets and continuity in ideal topological spaces, Fasc. Math., 65 (2021), 57-66.
  • [22] Paul N. R., Weakly open sets in ideal bitopological spaces, Int. J. Eng. Res. Techn., 2(7) (2013), 124-134.
  • [23] Popa V., Noiri T., On s-β-continuous multifunctions, J. Egypt. Math. Soc., 8 (2000), 127-137.
  • [24] Popa V., Noiri T., On s-precontinuous multifunctions, Demonstr. Math., 33 (2000), 679-687.
  • [25] Popa V., Noiri T., On M-continuous functions, Anal. Univ. ”Dunǎrea de Jos” Galąti, Ser. Mat. Fiz. Mec. Teor., Fasc. II 18(23)(2000), 31-41.
  • [26] Popa V., Noiri T., A unified theory for S-continuity of multifunctions, J. Math. Fac. Sci. Univ. Istanbul, 59 (2000), 1-15.
  • [27] Popa V., Noiri T., On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. Math., 22 (2001), 9-18.
  • [28] Popa V., Noiri T., On m-continuous multifunctions, Bul. St. Univ. Politeh. Timisoara, Ser. Mat. Fiz., 46(60)(2) (2001), 1-12.
  • [29] Popa V., Noiri T., A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51 (2002), 439-464.
  • [30] Popa V., Noiri T., Characterizations of C-quasi-continuous multifunctions, Math. Balkan., 20 (2006), 265-274.
  • [31] Rychlewicz A., Almost nearly continuity with reference to multifunctions in bitopological spaces, Int. J. Pure Appl. Math., 105(1) (2015), 7-18.
  • [32] Sarma D. J., bI-open sets in ideal bitopological spaces, Int. J. Pure Appl. Math., 105(1) (2015), 7-18.
  • [33] Sarma D. J., Kilicman A., Mishra L. N., A new type of weak open sets via idealization in bitopological spaces, Malays. J. Math. Math. Sci., 15(2) (2021), 189-197.
  • [34] Vaidyanathaswani R., The localization theory in set-topology, Proc. Indian Acad. Sci., 20 (1945), 51-61.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-68fede96-2da3-4a37-a4c4-fffba101dae1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.