Warianty tytułu
Języki publikacji
Abstrakty
Our aim in this paper is to provide a sharp integral inequality involving the norm of the traceless second fundamental form of a wide class of compact (without boundary) linear Weingarten hypersurfaces (including those with two distinct principal curvatures) immersed into a Riemannian space form. In particular, we generalize the results of Alías Meléndez (2020) when the ambient space form is the unit Euclidean sphere and give a new estimate when the space form is either the Euclidean space or the hyperbolic space. The sharpness of our integral inequality is realized by the totally umbilical spheres and, when the ambient space is the unit Euclidean sphere, by Clifford tori.
Rocznik
Tom
Strony
139--148
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Unidade Acadêmica de Ciências Exatas e da Natureza Universidade Federal de Campina Grande 58.900-000 Cajazeiras, Paraíba, Brazil, eudes.leite@professor.ufcg.edu.br
autor
- Departamento de Matemática Universidade Federal de Campina Grande 58.429-970 Campina Grande, Paraíba, Brazil, henrique@mat.ufcg.edu.br
Bibliografia
- [1] L. J. Alías, S. C. GarcíaMartínez and M. Rigoli, A maximum principle for hyper surfaces with constant scalar curvature and applications, Ann. Glob. Anal. Geom. 41 (2012), 307-320.
- [2] L. J. Alías and J. Meléndez, Integral inequalities for compact hypersurfaces with constant scalar curvature in the Euclidean sphere, Mediterr. J. Math. 17 (2020), art. 61, 14 pp.
- [3] L. J. Alías, J. Meléndez and O. Palmas, Hypersurfaces with constant scalar curvature in space forms, Differential Geom. Appl. 58 (2018), 65-82.
- [4] C. P. Aquino, H. F. de Lima and M. A. L. Velásquez, A new characterization of complete linear Weingarten hypersurfaces in real space forms, Pacific J. Math. 261 (2013), 33-43.
- [5] C. P. Aquino, H. F. de Lima and M. A. L. Velásquez, Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms, Michigan Math. J. 63 (2014), 27-40.
- [6] A. Brasil Jr., A. G. Colares and O. Palmas, Complete hypersurfaces with constant scalar curvature in spheres, Monatsh. Math. 161 (2010), 369-380.
- [7] X. Chao and P. Wang, Linear Weingarten hypersurfaces in Riemannian space forms, Bull. Korean Math. Soc. 51 (2014), 567-577.
- [8] Q. M. Cheng, Hypersurfaces in a unit sphere Sn+1 with constant scalar curvature, J. London Math. Soc. 64 (2001), 755-768.
- [9] Q. M. Cheng, Complete hypersurfaces in a Euclidean space R n+1 with constant scalar curvature, Indiana Univ. Math. J. 51 (2002), 53-68.
- [10] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204.
- [11] E. L. de Lima and H. F. de Lima, Complete Weingarten hypersurfaces satisfying an Okumura type inequality, J. Austral. Math. Soc. 109 (2020), 81-92.
- [12] J. N. Gomes, H. F. de Lima and M. A. L. Velásquez, Complete hypersurfaces with two distinct principal curvatures in a space form, Results Math. 67 (2015), 457-470.
- [13] Z. Hu and S. Zhai, Hypersurfaces of the hyperbolic space with constant scalar curvature, Results Math. 48 (2005), 65-88.
- [14] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665-672.
- [15] H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997), 327-351.
- [16] H. Li, Y. J. Suh and G. Wei, Linear Weingarten hypersurfaces in a unit sphere, Bull. Korean Math. Soc. 46 (2009), 321-329.
- [17] J. Meléndez, Rigidity theorems for hypersurfaces with constant mean curvature, Bull. Brazil. Math. Soc. 45 (2014), 385-404.
- [18] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213.
- [19] Q. L. Wang and C. Y. Xia, Rigidity theorems for closed hypersurfaces in space forms, Quart. J. Math. Oxford Ser. 56 (2005), 101-110.
- [20] G. Wei and Y. J. Suh, Rigidity theorems for hypersurfaces with constant scalar cur vature in a unit sphere, Glasgow Math. J. 49 (2007), 235-241.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-68ad4561-ba21-47a1-b9d6-a103d9fec772