Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | R. 89, nr 7 | 30--34
Tytuł artykułu

Accelerated Particle Swarm Optimization-based Approach to the Optimal Design of Substation Grounding Grid

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Optymalizacja projektowania sieci uziemiającej w podstacji wysokonapięciowej z wykorzystaniem algorytmów rojowych
Języki publikacji
EN
Abstrakty
EN
This article presents an application of the Accelerated Particle Swarm Optimization based approach to minimize the cost of grounding grids in high voltage substations while maintaining the legitimacy of safety necessities. The cost effectiveness and the constraints of ground potential rise, step and touch potentials are adapted to formulate optimized solutions for the grounding grid planning problem. The proposed approach attempts to calculate the optimal values of the grounding conductor lengths, cross sectional area, number of vertical rods, and depth of conductor burial while respecting a set of constraints within pre-set acceptable limits. Several test cases of grounding grid planning, some of them for real projects, are demonstrated to validate the proposed method. The superiority and efficacy of Accelerated Particle Swarm Optimization have been acknowledged in terms of grounding grid cost minimization, stable performance and short CPU computational time.
PL
W artykule zaprezentowano wykorzystanie algorytmu rojowego do minimalizacji kosztów sieci uziemiającej w podstacji wysokiego napięcia. Zaproponowany algorytm optymalizuje długość przewodu uziemiającego, liczbę prętów i głębokość przy założonych kryteriach. Przedstawiono wyniki symulacji i eksperymentu.
Wydawca

Rocznik
Strony
30--34
Opis fizyczny
Bibliogr. 26 poz., schem., tab.
Twórcy
  • University of Zagazig, Zagazig, Egipt
Bibliografia
  • [1] Puttarach, N. Chakpitak, T. Kasirawat and C. Pongsriwat, “Substation Grounding Grid Analysis with the Variation of Soil Layer Depth Method,” IEEE PES International Conference Power Tech, Lausanne, Switzerland, 2007, pp.1881-1886.
  • [2] ANSI/IEEE Std. 80-2000, Guide for Safety in AC Substation Grounding, IEEE Inc., 2000, New York.
  • [3] BS Std. 7430-1998, Code of Practice for Earthing, 1998.
  • [4] A_Puttarach, N_Chakpitak, T_Kasirawat and C_Pongsriwat, “Analysis of Substation Ground Grid for Ground Potential Rise Effect Reduction in Two-Layer Soil,” proc. EECTI International Conference,ChinagRai, Thailand, May 11-12, 2007.
  • [5] Y. Gao, R. Zeng, X. Liang, J. He, W. Sun and Q. Su, “Safety Analysis of Grounding Grid for Substations with Different Structure,” IEEE International Conference on Power System Technology, 3, pp. 1487-1492, 2000.
  • [6] F.P Dawalibi, and D. Mukhedkar, “Optimum design of substation grounding in two-layer earth model—Part I analytical study,” IEEE Trans Power Syst Applicat., PAS-94, pp. 252-261, 1975.
  • [7] Ioannis G. and I. Stathopulos, “Estimation of multilayer soil parameters using GA,” IEEE Trans Power Del, 20, (1), pp. 100 – 106, 2005.
  • [8] M.C. Costa, M. L. P. Filho, Y. Mirechal, J. Coulomb, and J. R. Cardoso, “Optimization of Grounding Grids by Response Surfaces and GA,” IEEE Trans Magn, 39, pp. 1301-1304, 2005.
  • [9] A.F. Otero, J. Cidrbs and C. Garrido, “GA-Based Method for Grounding Grid Design,” Proc. of the IEEE Int Conference on Evolutionary Computation, pp. 120-123, 1998.
  • [10] Z. He, X. Wen and J. Wang, “Optimization Design of Substation Grounding Grid Based on GA,” IEEE 3rd Int Conference on Natural Computation (ICNC 2007), 4, 2007, pp. 140-144.
  • [11] H.S. Lee, J. Kim, F.P. Dawalibi and J. Ma, “Efficient Ground Grid Design in Layered Soils,” IEEE Trans Power Del, 13, (3), pp. 745-751, 1998.
  • [12] W. Sun, J. He, Y. Gao, R. Zeng, W. Wu and Q. Su, “Optimal Design Analysis of Grounding Grids for Substations Built in Non-uniform Soil,” IEEE International Conference on Power System Technology, 3, 2000, pp. 1455-1460.
  • [13] J. He, Y. Gao, R. Zeng, W. Sun, J. Zou and Z. Guan, Optimal Design of Grounding System Considering the Influence of Seasonal Frozen Soil Layer, IEEE Trans Power Del, 20, (1), pp. 107-15, 2005.
  • [14] F. Neri, “A New Evolutionary Method for Designing Grounding Grids by Touch Voltage Control, Industrial Electronics,” IEEE International Symposium, 2, pp. 1501-1505, 2004.
  • [15] Chun-Yao Lee and Yi-Xing Shen, “Optimal Planning of Ground Grid Based on PSO,” World Academy of Science, Engineering and Technology, 36, pp. 30-37, 2009.
  • [16] Sverak, J. G., “Optimized grounding grid design using variable spacing technique,” IEEE Trans Power Apparat Syst, PAS-95, 1, pp. 362–374, 1976.
  • [17] Schwarz, S. J., “Analytical expression for resistance of grounding systems,” IEE Trans Power Apparat Syst, 73, (13), pp. 1011– 1016, 1954.
  • [18] Y.L. Chow, M.M.A. Salama, “A Simplified Method For Calculating The Substation Grounding Grid Resistance,” IEEE Trans Power Del, 9, (2), pp. 736-742, 1994.
  • [19] F. P. Dawalibi and D. Mukhedkar, “Parametric Analysis of Grounding Grid,” IEEE Trans PAS, 98, (5), pp. 1659-1668, 1979.
  • [20] B.Thapar, V. Gerez, Balakrishnan, and Donald A. Blank, “Simplified Equations For Mesh And Step Voltages In An AC Substation,” IEEE Trans Power Del, 6, (2), pp. 601-607, 1991.
  • [21] Kennedy J and Eberhart R, “Particle Swarm Optimizer,” IEEE IntConf Neural Net (Perth, Australia), IEEE Service Centre Piscataway, NJ, 5, pp.1942-1948, 1995.
  • [22] Eberhart R and Kennedy J, “A new optimizer using particle swarm theory,” Proc. of the 6th international symposium on micro machine and human science, Nagoya, Japan, 1995, pp. 39–43.
  • [23] Eberhart R.C. and Shi Y., “Comparing inertial weights and Constriction factor in PSO,” proceeding of the 2000 International Congress on Evolutionary Computation, San Diego, California, IEEE Service Centre, Piscataway, NJ, 2000, pp. 84-88.
  • [24] XS. Yang, Nature-Inspired Meta-heuristic Algorithms, 2nd edition, Luniver Press; ISBN-10: 1905986289, 2010.
  • [25] A.H. Gandomi, G.J. Yun, X.S. Yang, and S. Talatahari, “Combination of chaos and accelerated particle swarm optimization,” Communications in Nonlinear Science and Numerical Simulations, 18, 2013, pp. 327–340.
  • [26] http://www.mathworks.com.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-68aa9789-4a9c-4a90-8722-337cac096109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.