Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 2 | 135--141
Tytuł artykułu

Defect Detection of Printed Fabric Based on RGBAAM and Image Pyramid

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To solve the problem of defect detection in printed fabrics caused by abundant colors and varied patterns, a defect detection method based on RGB accumulative average method (RGBAAM) and image pyramid matching is proposed. First, the minimum period of the printed fabric is calculated by the RGBAAM. Second, a Gaussian pyramid is constructed for the template image and the detected image by using the minimum period as a template. Third, the similarity measurement method is used to match the template image and the detected image. Finally, the position of the printed fabric defect is marked in the image to be detected by using the Laplacian pyramid restoration. The experimental results show that the method can accurately segment the printed fabric periodic unit and locate the defect position. The calculation cost is low for the method proposed in this article.
Wydawca

Rocznik
Strony
135--141
Opis fizyczny
Bibliogr 16 poz.
Twórcy
  • School of Electronic Information, Xi’an Polytechnic University, Xi’an, Shaanxi 710048, China, jingjunfeng0718@sina.com
  • School of Electronic Information, Xi’an Polytechnic University, Xi’an, Shaanxi 710048, China
Bibliografia
  • [1] Xin, J., Wu, J., Yao, P. P., Shao, S. (2018). An empirical study on fabric image retrieval with multispectral images using color and pattern features. In: Progress in Color Studies: Cognition, Language and Beyond, 391.
  • [2] Zhang, H., Li, R., Jing, J., Li, P., Zhao, J. (2015). Fabric defect detection based on Frangi filter and fuzzy C-means algorithm in combination. Journal of Textile Research, 36(09), 120–124.
  • [3] Zhang, Z.-F., Zhai, Y.-S., Guo, Y.-Y. et al. (2015). Research on method to measure cotton defects based on optoelectronics technique. Laser and Optoelectronics Progress, 52(3), 154–159.
  • [4] Grigorescu, S.E., Petkov, J.M.F. (2003). Texture analysis using Renyi's generalized entropies. In: Proceedings 2003 International Conference on Image Processing. IEEE, 2003, 1, I–241.
  • [5] Lin, J.J. (2002). Applying a co-occurrence matrix to automatic inspection of weaving density for woven fabrics. Textile Research Journal, 72(6), 486–490.
  • [6] Jing, J.F., Yang, P., Li, P. (2015). Determination on design cycle of printed fabrics based on distance matching function. Journal of Textile Research, 36(12), 98–103.
  • [7] Zhou, J., Wang, J., Pan, R., et al. (2017). Periodicity measurement for fabric texture by using frequency domain analysis and distance matching function. Journal of Dong Hua University, Natural Sciences, 43(5), 629–633.
  • [8] Liu, S.M., Li, P., Zhang, L., et al. (2015). Defect detection based on sparse coding dictionary learning. Journal of Xi’an Polytechnic University, 29(5), 594–599.
  • [9] Fu, Q. (2013). Defect detection of printed fabrics. Journal of Xi’an Aeronautical University, 31(5), 50–52.
  • [10] Pan, R., Gao, W., Qian, X., et al. (2010). Detection of printed fabrics using normalized cross correlation. Journal of Textile Research, 31(12), 134–138.
  • [11] Kuo, C.F.J., Hsu, C.T.M., Chen, W.H., et al. (2012). Automatic detection system for printed fabric defects. Textile Research Journal, 82(6), 591–601.
  • [12] Li, Y., Wang, R., Cui, Z., et al. (2016). Spatial pyramid covariance based compact video code for robust face retrieval in TV-series. IEEE Transactions on Image Processing, 25(12), 5905–5919.
  • [13] Zhu, S., Hao, C. (2012). Fabric defect detection approach based on texture periodicity analysis. Computer Engineering and Application, 48(21), 163–166.
  • [14] Li, M., Cui, S., Chen, J. (2016). Defection for mini-jacquard fabric based on visual saliency. Journal of Textile Research, 37(12), 38–42+48.
  • [15] Nakhmani, A., Tannenbaum, A. (2013). A new distance measure based on generalized image normalized cross-correlation for robust video tracking and image recognition. Pattern Recognition Letters, 34(3), 315–321.
  • [16] Rao, Y.R., Prathapani, N., Nagabhooshanam, E. (2014). Application of normalized cross correlation to image registration. International Journal of Research in Engineering and Technology, 3(5), 12–16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-689202e6-1849-4b73-bd3b-2bd4ef389847
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.