Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 67, nr 5 | 401--414
Tytuł artykułu

The role of the microscale contact line dynamics in the wetting behaviour of complex fluids

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microscale morphology of the liquid-substrate contact line is studied experimentally in two well-known examples of dynamic wetting with complex fluids (namely, drop impact of dilute polymer solutions and spreading of superspreader surfactant solutions). High-speed, high-magnification images of the contact line details were obtained using a high-frame rate camera equipped with a digital microscope zoom lens. Unlike in the case of simple liquids, which exhibit a smooth contact line, the advancing or receding contact line of complex fluids shows peculiar transient features which extend significantly in the radial direction (perpendicular to the contact line itself). It is argued such microscopic features determine the macroscopic dynamic wetting behaviour of complex fluids.
Wydawca

Rocznik
Strony
401--414
Opis fizyczny
Bibliogr. 24 poz., fot., rys.
Twórcy
autor
  • School of Engineering University of Liverpool Brownlow Hill, Liverpool L69 2GH, UK
autor
Bibliografia
  • 1. P-G. de Gennes, Wetting: statics and dynamics, Reviews of Modern Physics, 57, 827–863, 1985.
  • 2. T. Young, An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, 95, 65, 1805.
  • 3. C.G.L. Furmidge, Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention, Journal of Colloid Science, 17, 309–324, 1962.
  • 4. E.B. Dussan, On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2. Small drops or bubbles having contact angles of arbitrary size, Journal of Fluid Mechanics, 151, 1–20, 1985.
  • 5. J.W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut Academy of Arts and Sciences, 1876.
  • 6. R. Tadmor, Approaches in wetting phenomena, Soft Matter, 7, 1577–1580, 2011.
  • 7. A. Friedman, Wetting and adsorption at chemically heterogeneous surfaces, [in:] Mathematics in Industrial Problems, The IMA Volumes in Mathematics and its Applications, 57, 185–197, Springer, New York, 1994.
  • 8. P.S. Swain, R. Lipowsky, Contact angles on heterogeneous surfaces: A new look AT Cassie’s and Wenzel’s laws, Langmuir, 14, 6772–6780, 1998.
  • 9. E. Bormashenko, Wetting transitions on biomimetic surfaces, Philosophical Transactions of the Royal Society A, 368, 4695–4711, 2010.
  • 10. E. Bormashenko, Y. Bormashenko, G. Oleg, On the nature of the friction between nonstick droplets and solid substrates, Langmuir, 26, 12479, 2010.
  • 11. S.F. Chini, V. Bertola, A. Amirfazli, A methodology to determine the adhesion forces of arbitrarily shaped drops with convex contact lines, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 425–433, 2013.
  • 12. V. Bertola, Dynamic wetting of dilute polymer solutions: the case of impacting droplets, Advances in Colloids and Interfaces, 193-194, 1–11, 2013.
  • 13. M.I. Smith, V. Bertola, Effect of polymer additives on the wetting of impacting droplets, Physical Review Letters, 104, 154502, 2010.
  • 14. R. Crooks, J. Cooper-White, D.V. Boger, The role of dynamic surface tension and elasticity on the dynamics of drop impact, Chemical Engineering Science, 56, 5575–5592, 2001.
  • 15. V. Bergeron, D. Bonn, J.-Y. Martin, L. Vovelle, Controlling droplet deposition with polymer additives, Nature, 405, 772–775, 2000.
  • 16. D. Bartolo, A. Boudaoud, G. Narcy, D. Bonn, Dynamics of non-Newtonian droplets, Phys. Rev. Lett., 99, 174502, 2007.
  • 17. J. Venzmer, Superspreading – 20 years of physicochemical research, Current Opinions in Colloid and Interface Science, 16, 335–343, 2011.
  • 18. N.P. Cheremisinoff, Handbook of Engineering Polymeric Solutions, Marcel Dekker, New York, 1997.
  • 19. V.N. Kalashnikov, A.N. Askarov, Relaxation time of elastic stresses in liquids with small additions of soluble polymers of high molecular weights, Journal of Engineering Physics, 57, 874–878, 1989.
  • 20. J.E. Glass, Adsorption characteristics of water-soluble polymers. II poly(ethylene oxide) at the aqueous–air interface, Journal of Physical Chemistry, 72, 4459–4467, 1968.
  • 21. V. Bertola, An experimental study of bouncing Leidenfrost drops: comparison between Newtonian and viscoelastic liquids, International Journal of Heat and Mass Transfer, 52, 1786–1793, 2009.
  • 22. M. Rein, Phenomena of liquid-drop impact on solid and liquid surfaces, Fluid Dynamic Research, 12, 61–93, 1993.
  • 23. V. Bertola, The effect of polymer additives on the apparent dynamic contact angle of impacting drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects 363, 135–140, 2010.
  • 24. R.B. Bird, P.J. Dotson, N.L. Johnson, Polymer solution rheology based on a finitely extensible bead-spring chain model, Journal of Non-Newtonian Fluid Mechanics, 7, 213–235, 1980.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-688a80d6-5ddd-4b87-b79b-47b5dbd35ca9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.