Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 48, nr 3 | 440--451
Tytuł artykułu

Fixed point theorems on generalized metric spaces for mappings in a class of almost φ-contractions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain some new fixed point theorems in generalized metric spaces for maps satisfying an implicit relation. The obtained results unify, generalize, enrich, complement and extend a multitude of related fixed point theorems from metric spaces to generalized metric spaces.
Wydawca

Rocznik
Strony
440--451
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Natural Sciences, University of Gjirokastra, Albania, gjonileta@yahoo.com
autor
  • Department of Mathematics, Faculty of Natural Sciences, University of Gjirokastra, Albania, kristaqkikina@yahoo.com
Bibliografia
  • [1] A. Azam, M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. 1(1) (2008), 45–48.
  • [2] V. Berinde, Approximating fixed point of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9(1) (2004), 43–53.
  • [3] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, Heidelberg, New York, 2007.
  • [4] V. Berinde, M. Pacurar, Fixed points and continuity of almost contractions, Fixed Point Theory 9(1) (2008), 23–34.
  • [5] V. Berinde, Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J. Math. 27(1) (2011), 13–23.
  • [6] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103–108.
  • [7] A. Branciari, A fixed point theorem of Banach–Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31–37.
  • [8] P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci. 1 (2002), 29–33.
  • [9] P. Das, L. K. Dey, A fixed point theorem in a generalized metric space, Soochow J. Math. 33 (2007), 33–9.
  • [10] P. Das, L. K. Dey, Fixed point of contractive mappings in a generalized metric space, Math. Slovaca 59(4) (2009), 499–504.
  • [11] P. Das, L. K. Dey, Porosity of certain classes of operators in generalized metric spaces, Demonstratio Math. 42(1) (2009), 163–174.
  • [12] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969), 405–408.
  • [13] L. Kikina, K. Kikina, A fixed point theorem in generalized metric spaces, Demonstratio Math. 46(1) (2013), 181–190.
  • [14] L. Kikina, K. Kikina, Fixed points on two generalized metric spaces, Int. J. Math. Anal. 5(30) (2011), 1459–1467.
  • [15] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 256–290.
  • [16] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.
  • [17] B. Samet, Discussion on a fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces by Branciari, Publ. Math. Debrecen 76(3–4) (2010), 493–494.
  • [18] I. R. Sarma, J. M. Rao, S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl. 2(3) (2009), 180–182.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-68704e00-03f5-4623-a789-9c5fd806d909
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.