Czasopismo
2016
|
Vol. 34, No. 2
|
399--403
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this article, the influence of ion irradiation on temperature dependent electrical transport characteristics of thin graphite flakes was investigated. Thin graphite flakes were exfoliated by mechanical exfoliation method. Scanning electron microscopy was used to study surface morphology of the graphite flakes. The resistance versus temperature studies revealed that the graphite flake not subjected to Ga+ ion-irradiation showed a perfect metallic behavior, while the graphite flake after ion-irradiation showed a semiconducting behavior. The current-voltage (I-V) characteristics of bare and ion-irradiated graphite flakes were investigated. The bare graphite flake showed an ohmic-type I-V characteristics representing metallic behavior, while the ion-irradiated graphite flake showed a non-linear type diode-like characteristics. The temperature-dependent conductance measurements of ion-irradiated graphite flake were also performed and discussed in detail. The effect of Ga+ ions on the electronic transport behavior of thin graphite flakes has been discussed based on the investigation results.
Czasopismo
Rocznik
Tom
Strony
399--403
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Faculty of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Kingdom of Saudi Arabia, jabrilkhamaj2015@gmail.com
Bibliografia
- [1] Kopelevich Y., Torres J.H.S., Da Silva R.R., Mrowka F., Kempa H., Esquinazi P., Phys. Rev. Lett., 90 (2003), 156402.
- [2] Luk’Yanchuk I.A., Kopelevich Y., Phys. Rev. Lett., 93 (2004), 166402.
- [3] Kelly B.T., Physics Of Graphite, Applied Science, London, Englewood, 1981, Pp 267 - 361.
- [4] Javey A., Jing G., Qian W., Lundstrom M., Dai H., Nature, 424 (2003), 654.
- [5] Wind S.J., Appenzeller J., Martel R., Derycke V., Avouris P., Appl. Phys. Lett., 80 (2002), 3817.
- [6] Tans S.J., Verschueren R.M., Dekker C., Nature, 393 (1998), 49.
- [7] Banerjee S., Sardar M., Gayathri N., Tyagi A.K., Baldev Raj., Appl. Phys. Lett., 88 (2006), 062111.
- [8] Kopelevich Y., Esquinazi P., Torres J., Moehlecke S., J. Low Temp. Phys., 119 (2000), 691.
- [9] Kempa H., Solid State Commun., 115 (2000), 539.
- [10] Berger C., Song Z.M., Li T.B., Li X.B., Ogbazghi A.Y., Feng R., Dai Z.T., Marchenkov A.N., Conrad E.H., First P.N., De Heer W.A., J. Phys. Chem. B, 108 (2004), 19912.
- [11] Morelli D.T., Uher C., Phys. Rev. B, 30 (1984), 1080.
- [12] Uher C., Hockey R.L., Jacob E.B., Phys. Rev. B, 35 (1987), 9.
- [13] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Dubonos S.V., Grigorieva I.V., Firsov A.A., Science, 306 (2004), 666.
- [14] Dresselhaus M.S., Dresselhaus G., Adv. Phys., 30 (1981), 139.
- [15] Natori A., J. Phys. Soc. Jpn., 55 (1986), 4370.
- [16] Li X., Doctor Thesis, Submitted To Georgia Institute Of Technology, 2008.
- [17] Leduc H.G., Bumble B., Cypher S.R., Judas A.J., Stern J.A., Proceedings Of The Third International Symposium On Space Terahertz Technology, University Of Michigan, Ann Arbor, 1992., P. 408.
- [18] Lu K., J. Nanosci. Nanotechnol. 9 (2009), 2598.
- [19] Bunch J.S., Van Der Zande A.M., Verbridge S.S., Frank I.W., Tanenbaum D.M., Parpia J.M., Craighead H.G., Mceuen P.L., Science, 315 (2007), 490.
- [20] Novoselov K.S., Jiang Z., Zhang Y., Morozov S.V., Stormer H.L., Zeitler U., Maan J.C., Boebinger G.S., Kim P., Geim A.K., Science, 315 (2007), 1379.
- [21] Kopelevich Y., Squinazi P., Adv. Mater., 19 (2007), 4559.
- [22] Sugihara K., Phys. Rev. B, 37 (1988), 4752.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-68689978-74ab-4dde-af68-2393178625ec