Warianty tytułu
Języki publikacji
Abstrakty
This paper presents research results on CO2 emissions originating from maritime vessels with various main engine settings. The impact (i.e., the volume and amount) of gas emissions into the environment is shown, along with the characteristics of the marine fuel used. This research was carried out on a container vessel sailing on a fixed route between Rotterdam and St. Petersburg. It covered mainly two different engine operations, at 124 RPM and 100 RPM settings, in the Kiel Canal area. The purpose of this study is to demonstrate that the engine setting of 100 RPM compared to the same voyage through the Kiel Canal, with an engine setting of 124 RPM, leads to a significant reduction of CO2 emissions. Though proving such a thesis seems to be evident, the analysis in the paper shows that, in practice, mainly due to time constraints and engineers’ assumptions of engine technical status, the higher speeds are still preferred over lower ones. In studies not related to passive use or active methods, only specific and simplest methods of obtaining CO2 emissions are presented.
Rocznik
Tom
Strony
123--130
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Navigation, Department of Maritime Simulation 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland, k.posacka@pm.szczecin.pl
Bibliografia
- 1. Federal Waterways and Shipping Agency (2022) The Kiel Canal International Lifeline for Marine Traffic and the Sea Pearl of Schleswig-Holstein. Federal Maritime and Hydrographic Agency (BSH).
- 2. Hydrographic Office (2020) Admiralty Sailing Directions North Sea (East) Pilot (NP 55). 12th Edition. United Kingdom: Hydrographic Office.
- 3. IMO (2005a) The International Convention for the Prevention of Pollution from Ships (MARPOL). Annex VI ‒ Prevention of Air Pollution from Ships, Regulation 13 ‒ Nitrogen Oxides (NOx).
- 4. IMO (2005b) The International Convention for the Prevention of Pollution from Ships (MARPOL). Annex VI ‒ Prevention of Air Pollution from Ships, Regulation 14 ‒ Sulphur Oxides (SOx) and Particulate Matter.
- 5. IMO (2019) Requirements to reduce the sulphur content of marine fuel.
- 6. IMO (2023a) 2023 IMO strategy on reduction of GHG emissions from ships. Resolution MEPC.377(80). Adopted on 7 July 2023.
- 7. IMO (2023b) EEXI and CII ship carbon intensity and rating system. [Online]. Available from: https://www.imo.org/en/ MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx [Accessed: 19 October 2023].
- 8. IMO (2023c) Fourth greenhouse gas study 2020. [Online]. Available from: https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx [Accessed: 19 October 2023].
- 9. IMO (2023d) Improving the energy efficiency of the ship. [Online]. Available from: https://www.imo.org/en/OurWork/ Environment/Pages/Improving%20the%20energy%20efficiency%20of%20ships.aspx [Accessed: 19 October 2023].
- 10. Klopott, M. (2016) Monitoring of Carbon Dioxide Emissions from Maritime Transport as a First Step toward Reducing the GHG Emissions from Shipping. Problemy Transportu i Logistyki 4 (36), pp. 41‒50, doi: 10.18276/ ptl.2016.36-04 (in Polish).
- 11. PRS (2018) Wymagania IMO dotyczące redukcji zawartości siarki w paliwie żeglugowym. Co należy wiedzieć. [Online]. Available from: https://pisil.pl/wymagania-imodotyczace-redukcji-zawartosci-siarki-w-paliwiezeglugowym-czyli-co-nalezy-wiedziec-opracowaniepolskiego-rejestru-statkow/ [Accessed: 19 October 2023].
- 12. Shell (2022) Fuel analysis operational report.
- 13. Shell (2023) Ultra-Low Sulphur Fuel Oil. Typical Properties. [Online]. Available from: https://www.shell.com/business-customers/marine/fuel/ulsfo.html [Accessed: 19 October 2023].
- 14. Suder, J. (2020) Jak zmieni się żegluga morska po nowych regulacjach klimatycznych. [Online] 17 January. Available from: https://www.dev.obserwatorfinansowy.pl/bez-kategorii/rotator/jak-zmieni-sie-zegluga-morska-po-nowych-regulacjach-klimatycznych/ [Accessed: 19 October 2023].
- 15. Van Roy, W., Merveille, J.-B., Scheldeman, K., Van Nieuwenhove, A., Van Roozendael, B., Schallier, R. & Maes, F. (2023) The role of Belgian airborne sniffer measurements in the MARPOL Annex VI Enforcement Chain. Atmosphere 14 (4), 623, doi: 10.3390/atmos14040623.
- 16. Winnes, H., Styhre, L. & Fridell, E. (2015) Reducing GHG emissions from ships in port areas. Research in Transportation Business & Management 17, pp. 73‒82, doi: 10.1016/j.rtbm.2015.10.008.
- 17. Witkowski, K. (2016) The problematics of atmospheric pollution by ships used in maritime transport. Autobusy: technika, eksploatacja, systemy transportowe 17 (6), pp. 468‒473 (in Polish).
- 18. Witkowski, K. (2020) Research of the effectiveness of selected methods of reducing toxic exhaust emissions of marine diesel engines. Journal of Marine Science and Engineering 8 (6), 452, doi:10.3390/jmse8060452.
- 19. Yachun Wujiazui Shipbuilding Design Institute (2011) The particulars of the M/V Amina ship.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-6842d15c-d309-4ded-ab8e-3c6340b2dac1