Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 64, iss. 4 | 517--524
Tytuł artykułu

Nonlocal approach to the CAFE solution of creep crack growth problem

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solving a creep crack growth problem using the CAFE methodology encounters the problems typical of other local methods. This article presents a nonlocal grid method applied in order to regularize these problems. The subject of the analysis is a rectangular plate with a central hole and an internal crack. The results obtained for different mesh sizes have subsequently been compared.
Słowa kluczowe
Wydawca

Rocznik
Strony
517--524
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
Bibliografia
  • 1. Bodnar A., Chrzanowski M., Nowak K., Brittle failure lines in creeping plates, International Journal of Pressure Vessels and Piping, 66(1–3): 253–261, 1996, doi: 10.1016/0308-0161(95)00100-X.
  • 2. Murakami S., Liu Y., Mesh-dependence in local approach to creep fracture, International Journal of Damage Mechanics, 4(3): 230–250, 1995, doi: 10.1177/105678959500400303.
  • 3. Hayhurst D.R., Brown P.R., Morrison C.J., The role of continuum damage in creep crack growth, Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical, 311(1516): 131–158, 1984, doi: 10.1098/rsta.1984.0022.
  • 4. Murakami S., Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, Springer, Dordrecht – Heidelberg – London – New York, 2012.
  • 5. Besson J., Continuum models of ductile fracture: a review, International Journal of Damage Mechanics, 19(1): 3–52, 2010, doi: 10.1177/1056789509103482.
  • 6. Hall F.R., Hayhurst D.R., Modelling of grain size effects in creep crack growth using a non-local continuum damage approach, Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 433(1888): 405–421, 1991, doi: 10.1098/rspa.1991.0055.
  • 7. Bilby B.A., Howard I.C., Li Z.H., Mesh independent cell models for continuum damage theory, Fatigue and Fracture of Engineering Materials and Structures, 17(1888): 1221– 1233, 1994, doi: 10.1111/j.1460-2695.1994.tb01411.x.
  • 8. de Vree J.H.P., Brekelmans W.A.M., van Gils M.A.J., Comparison of nonlocal approaches in continuum damage mechanics, Computers & Structures, 55(4): 581–588, 1995, doi: 10.1016/0045-7949(94)00501-S.
  • 9. Nowak K., Cellular automata multiscale model of creep deformation and damage, [in:] Deterioration and failure of structural materials, J. German [Ed.], CUT Press, Kraków, 65–84, 2014.
  • 10. Shterenlikht A., Howard I.C., The CAFE model of fracture – application to a TMCR steel, Fatigue and Fracture of Engineering Materials and Structures, 29: 770–787, 2006, doi: 10.1111/j.1460-2695.2006.01031.x.
  • 11. Madej Ł., Hodgson P.D., Pietrzyk M., The validation of a multiscale rheological model of discontinuous phenomena during metal rolling, Computational Materials Science, 41(2): 236–241, 2007, doi: 10.1016/j.commatsci.2007.04.002.
  • 12. Chrzanowski M., On the possibility of describing the complete process of metallic creep, Bull. Ac. Pol. Sc. Ser. Sc. Techn., XX: 75–81, 1972.
  • 13. Belloni G., Bernasconi G., Piatti G., Creep damage and rupture in AISI 310 austenitic steel, Meccanica, 12(2): 84–96, 1977, doi: 10.1007/BF02215879.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-67f38b47-bbe8-4328-b86f-7f6f2e3f0531
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.