Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 8 | 212--218
Tytuł artykułu

Application of heteropoly compounds with Keggin structure in corrosion protection and Ni-MH cell technology

Treść / Zawartość
Warianty tytułu
PL
Zastosowanie heteropolizwiązków o strukturze Keggina w ochronie przed korozją i technologii ogniw Ni-MH
Języki publikacji
EN
Abstrakty
EN
Heteropolyacids (HPA) and their salts are a group of chemical compounds that arouse the interest of many researchers due to the variety of properties and applications. These compounds are characterized by, among other things, high proton mobility, as well as the ability to accept and release electrons. HPAs are extensively studied especially in the design of various functional catalysts. The area of their application is constantly growing due to the possibility of modifying their chemical composition. This work presents the basic areas of research on Keggin-type heteropoly compounds (HPC), with particular emphasis on their catalytic and anti-corrosion properties, to assess the possibility of using HPAs in Ni-MH cell technology. Analysis of the available literature confirmed our assumption that these are promising compounds offering both chemists and materials scientists many cognitive and application possibilities. Literature examples indicate that HPA should fulfil two important tasks: catalyse the charging/discharging processes of hydride electrodes in Ni-MH cells and inhibit corrosion processes leading to the degradation of the electrode material.
PL
Heteropolikwasy (HPK) i ich sole to grupa związków chemicznych, która ze względu na różnorodność właściwości i zastosowań wzbudza zainteresowanie wielu badaczy. Związki te charakteryzują się między innymi wysoką mocą i ruchliwością protonów, a także zdolnością do przyjmowania i uwalniania elektronów. HPK są badane zwłaszcza pod kątem projektowania różnych katalizatorów funkcjonalnych. Zakres ich zastosowania stale się zwiększa ze względu na możliwość modyfikacji ich składu chemicznego. W pracy zostały opisane podstawowe obszary badań heteropolizwiązków (HPZ) o strukturze Keggina. Uwzględniono ich właściwości katalityczne i antykorozyjne w celu dokonania oceny możliwości wykorzystania HPK w technologii ogniw Ni-MH. Analiza literatury przedmiotu potwierdziła założenie, że związki te mają duży potencjał aplikacyjny i stanowią interesujący przedmiot badań zarówno dla chemików, jak i materiałoznawców. Z publikacji dotyczących tego zagadnienia wynika, że HPK powinny spełniać dwa ważne zadania: katalizować procesy ładowania i rozładowania elektrod wodorkowych w ogniwach Ni-MH oraz inhibitować procesy korozyjne, prowadzące do degradacji materiału elektrodowego.
Wydawca

Rocznik
Tom
Strony
212--218
Opis fizyczny
Bibliogr. 57 poz., tab., wykr.
Twórcy
  • Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Częstochowa, Poland, krystyna.giza@pcz.pl
Bibliografia
  • [1] M. Kourasi, R. G. A. Wills, A. A. Shah, F. C. Walsh. 2014. “Heteropolyacids for Fuel Cell Applications.” Electrochimica Acta 127: 454–466. DOI: 10.1016/j.electacta.2014.02.006.
  • [2] N. L. Z. Z. Adil, T. S. T. Saharuddin, L. N. Ozair, F. W. Harun. 2021. “Short Review on Heteropoly Acid Based Catalyst for Valorization of Biomass Waste into Valueable Chemicals.” IOP Conference Series: Materials Science and Engineer ing 1173: 012073. DOI: 10.1088/1757-899x/1173/1/012073.
  • [3] A. M. Escobar, G. Blustein, R. Luque, G. P. Romanelli. 2021. “Recent Aplica tions of Heteropolyacids and Related Compounds in Heterocycle Synthesis. Contributions between 2010 and 2020.” Catalysts 11(2): 291. DOI: 10.3390/catal11020291.
  • [4] I. V. Kozhevnikov. 1998. “Catalysis by Heteropoly Acids and Multicompon ent Polyoxometalates in Liquid-Phase Reactions.” Chemical Reviews 98(1): 171−198. DOI: 10.1021/cr960400y.
  • [5] N. Mizuno, M. Misono. 1997. “Heteropolyacid Catalysts.” Current Opin ion in Solid State and Materials Science 2(1): 84–89. DOI: 10.1016/s1359 0286(97)80109-x.
  • [6] F. M. B. Gusmão, D. Mladenović, K. Radinović, D. M. F. Santos, B. Šljukić. 2022. “Polyoxometalates as Electrocatalysts for Electrochemical Energy Conver sion and Storage.” Energies 15(23): 9021. DOI: 10.3390/en15239021.
  • [7] D. E. Katsoulis. 1998. “A Survey of Applications of Polyoxometalates.” Chem ical Reviews 98(1): 359–388. DOI: 10.101/cr960398a.
  • [8] D. Cheng, K. Li, H. Zang, J. Chen. 2023. “Recent Advances on Polyoxometal ate-Based Ion-Conducting Electrolytes for Energy-Related Devices.” Energy and Environmental Materials 6: 6e12341. DOI: 10.1002/eem2.12341.
  • [9] P. Niemiec. 2021. “The Electronic Structure of Phosphotungstic (H3PW12O40) Heteropolyacids Modified by Fe²+ Cation.” Science, Technology and Innova tion 11(4): 24–32. DOI: 10.5604/01.3001.0014.7530.
  • [10] G. E. Badea, A. Fodor, A. I. G. Petrehele, I. Maior, M. Toderas, C. M. Morgovan. 2023. “Evaluation of Phosphopolyoxometalates with Mixed Addenda (Mo, W, V) as Corrosion Inhibitors for Steels.” Materials 16(24): 7600. DOI: 10.3390/ma16247600.
  • [11] H. Kim, P. Kim, J. Yi, K. Y. Lee, S. H. Yeom, I. K. Song. 2006. “Preparation and Catalytic Activity of H3PMo12O40 Catalyst Molecularly Immobilized on Poly styrene Support.” Studies in Surface Science and Catalysis 159: 297–300. DOI: 10.1016/s0167-2991(06)81592-2.
  • [12] M. Rękas. 2024. Ogniwa paliwowe. Wykład VI. https://home.agh.edu.pl/~radecka/doc/Ogniwa_SOFC.pdf (access: 19.02.2024).
  • [13] J. J. Zhu, R. Benages-Vilau, P. Gomez-Romero. 2020. “Can Polyoxometalates Enhance the Capacitance and Energy Density of Activated Carbon in Or ganic Electrolyte Supercapacitors?” Electrochimica Acta 362: 137007. DOI: 10.1016/j.electacta.2020.137007.
  • [14] M. Genovese, K. Lian. 2017. “Polyoxometalate Modified Pine Cone Biochar Carbon for Supercapacitor Electrodes.” Journal of Materials Chemistry A 5: 3939–3947. DOI: 10.1039/C6TA10382K.
  • [15] P. E. Phyu Win, J. X. Wang, X. Y. Jia, B. Qi, W. Chena, L. He, Y.-F. Song. 2020. “Synergistic Effects of Polyoxometalate with MoS2 Sheets on Multi- -Walled Carbon Nanotubes Backbone for High-Performance Supercapa- citor.” Journal of Alloys and Compounds 844: 156194. DOI: 10.1016/j. jallcom.2020.156194.
  • [16] H. Li, W. Qi, H. Sun, P. Li, Y. Yang, L. Wu. 2008. “A Novel Polymerizable Pigment Based on Surfactant-Encapsulated Polyoxometalates and Their Application in Polymer Coloration.” Dyes and Pigments 79(2): 105–110. DOI: 10.1016/j.dyepig.2007.11.008.
  • [17] R. Li, Y. Wang, F. Zeng, C. Si, D. Zhang, W. Xu, J. Shi. 2023. “Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degrada tion.” International Journal of Molecular Sciences 24(20): 15244. DOI: 10.3390/ijms242015244.
  • [18] S. Herrmann, L. De Matteis, J. M. de la Fuente, S. G. Mitchell, C. Streb. 2017. “Removal of Multiple Contaminants from Water by Polyoxometalate Sup ported Ionic Liquid Phases (POM-SILPs).” Angewandte Chemie International Edition 56(6): 1667–1670. DOI: 10.1002/anie.201611072.
  • [19] T. Fotiou, T. M. Triantis, T. Kaloudis, E. Papaconstantinou, A. Hiskia. 2014. “Photocatalytic Degradation of Water Taste and Odour Compounds in the Presence of Polyoxometalates and TiO2: Intermediates and Degradation Pathways.” Journal of Photochemistry and Photobiology A: Chemistry 286: 1–9. DOI: 10.1016/j.jphotochem.2014.04.013.
  • [20] A. Al-Dawsari, A. M. Turkustani, F. Bannani. 2019. “Acid-Resistant Corrosion Protection Polyoxometalate Ionic Liquids as Anticorrosion Coatings.” Jour nal of Materials and Environmental Sciences 10(11): 1135–1151.
  • [21] A. Misra, I. F. Castillo, D. P. Müller, C. González, S. Eyssautier-Chuine. 2018. “Polyoxometalate-Ionic Liquids (POM-ILs) as Anticorrosion and Antibac- terial Coatings for Natural Stones.” Angewandte Chemie International Edition 57(45): 14926–14931. DOI: 10.1002/anie.201809893.
  • [22] X.-F. Wang, X.-Y. Liu, F. Su, J.-S. Li, Z.-M. Zhu, X.-J. Sang, L.-C. Zhang. 2022. “En hanced Corrosion Resistance of Carbon Steel in Hydrochloric Acid Solution by Polyoxometalate-Esterin Derivatives.” ACS Omega 7(5): 4429–4443. DOI: 10.1021/acsomega.1c06276.
  • [23] X. Q. Hu, C. H. Liang, X. N. Wu. 2011. “Corrosion Behaviors of Carbon Steel in 55% LiBr Solution Containing PWVA Inhibitor.” Materials and Corrosion 62: 444–448. DOI: 10.1002/maco.200905528.
  • [24] L. Adamczyk, P. J. Kulesza. 2011. “Fabrication of Composite Coatings of 4-(Pyrrole-1-Yl) Benzoate-Modified Poly-3,4-Ethylenedioxythiophene with Phosphomolybdate and Their Application in Corrosion Protection.” Electro chimica Acta 56(10): 3649–3655. DOI: 10.1016/j.electacta.2010.12.078.
  • [25] L. Adamczyk, K. Giza, A. Dudek. 2014. “Electrochemical Preparation of Com posite Coatings of 3,4-Etylenodioxythiophene (EDOT) and 4-(Pyrrole-1-Yl) Benzoic Acid (PyBA) with Heteropolyanions.” Materials Chemistry and Physics 144(3): 418–424. DOI: 10.1016/j.matchemphys.2014.01.012.
  • [26] J. Hou, G. Zhu, J. Zheng. 2011. “Synthesis, Characterization and Corro sion Protection Study of Polypyrrole/Phosphotungstate Coating on Low Alloy Steel in Seawater.” Polymer Science Series B 53: 546. DOI: 10.1134/ S1560090411100034.
  • [27] A. P. Atencio, J. R. Aviles, D. Bolaños, R. Urcuyo, M. L. Montero, D. González- -Flores, P. Ocón. 2022. “Anti-Corrosive Additives for Alkaline Electrolyte in Al-Air Batteries: NH4VO3 and Polyoxometalates.” Electrochemical Science Ad- vances 2(4): e2100125. DOI: 10.1002/elsa.202100125.
  • [28] V. S. Korenev, T. S. Sukhikh, M. N. Sokolov. 2023. “A Series of Lanthanide Complexes with Keggin-Type Monolacunary Phosphotungstate: Syn- thesis and Structural Characterization.” Inorganics 11(8): 327. DOI: 10.3390/inorganics11080327.
  • [29] T. Feng, H. Wang, Y. Liu, J. Zhang, Y. Xiang, S. Lu. 2019. “A Redox Flow Bat tery with High Capacity Retention Using 12-Phosphotungstic Acid/Iodine Mixed Solution as Electrolytes.” Journal of Power Sources 436: 226831. DOI: 10.1016/j.jpowsour.2019.226831.
  • [30] Y. Y. Liu, S. F. Lu, H. N. Wang, C. M. Yang, X. Su, Y. Xiang. 2017. “An Aqueous Re dox Flow Battery with a Tungsten–Cobalt Heteropolyacid as the Electrolyte for Both the Anode and Cathode.” Advanced Energy Materials 7(8): 1601224. DOI: 10.1002/aenm.201601224.
  • [31] Y. Ding, B. Du, X. Zhao, J. Y. Zhu, D. Liu. 2017. “Phosphomolybdic Acid and Ferric Iron as Efficient Electron Mediators for Coupling Biomass Pretreat ment to Produce Bioethanol and Electricity Generation from Wheat Straw.” Bioresource Technology 228: 279–289. DOI: 10.1016/j.biortech.2016.12.109.
  • [32] X. Du, W. Liu, Z. Zhang, A. Mulyadi, A. Brittain, J. Gong, Y. Deng. 2017. “Low--Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization.” Chemistry–Sustainability–Energy–Materials 10(5): 847–854. DOI: 10.1002/cssc.201601685.
  • [33] C. W. Anson, S. S. Stahl. 2020. “Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2, and Oxidation of H2, Alcohols, Biomass, and Complex Fuels.” Chemical Reviews 120(8): 3749 3786. DOI: 10.1021/acs.chemrev.9b00717.
  • [34] T. Matsui, E. Morikawa, S. Nakada, T. Okanishi, H. Muroyama, Y. Hirao, T. Takahashi, K. Eguchi. 2016. “Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.” ACS Applied Materials and Interfaces 8(28): 18119 18125. DOI:10.1021/acsami.6b05202.
  • [35] L. Z. Abunaeva, E. A. Ruban, M. A. Myachina, P. A. Loktionov, D. E. Verakso, A. A. Pustovalova, M. M. Petrov, D. V. Konev, N. N. Gavrilova, A. E. Antipov. 2022. “A Mixture of Phospho-, Vanadium-, and Molybdo-Heteropoly- acids as a Promising Cathode Redox-Mediator for Hybrid Hydrogen–Air Fuel Cells.” Russian Journal of Electrochemistry 58: 938–945. DOI: 10.1134/s1023193522100032.
  • [36] H. Gao, K. Lian. 2011. “Proton Conducting Heteropoly Acid Based Electrolyte for High Rate Solid Electrochemical Capacitors.” Journal of The Electrochem ical Society 158: A1371–A1378. DOI: 10.1149/2.064112jes.
  • [37] M. Skunik-Nuckowska, S. Dyjak, K. Grzejszczyk, N. H. Wisińska, F. Béguin, P. J. Kulesza. 2018. “Capacitance Characteristics of Carbon-Based Electro chemical Capacitors Exposed to Heteropolytungstic Acid Electrolyte.” Elec trochimica Acta 282: 533–543. DOI: 10.1016/j.electacta.2018.06.070.
  • [38] K. Lian, C. Li. 2008. “Heteropoly Acid Electrolytes for Double-Layer Capacit- ors and Pseudocapacitors.” Electrochemical and Solid-State Letters 11(9): A158–A162. DOI: 10.1149/1.2955861.
  • [39] A. A. Vannathan, P. R. Chandewar, D. Shee, S. S. Mal. 2022. “Asymmetric Polyoxometalate-Polypyrrole Composite Electrode Material for Electro chemical Energy Storage Supercapacitors.” Journal of Electroanalytical Chemistry 904: 115856. DOI: 10.1016/j.elechem.2021.115856.
  • [40] A. M. Mohamed, M. Ramadan, N. Ahmed, A. O. A. ElNaga, H. H. Alalawy, T. Zaki, S. A. Shaban, H. B. Hassan, N. K. Allam. 2020. “Metal–Organic Frame works Encapsulated with Vanadium-Substituted Heteropoly Acid for Highly Stable Asymmetric Supercapacitors.” Journal of Energy Storage 28: 101292. DOI: 10.1016/j.est.2020.101292.
  • [41] A. S. Cherevan, S. P. Nandan, I. Roger, R. Liu, C. Streb, D. Eder. 2020. “Polyoxometalates on Functional Substrates: Concepts, Synergies, and Fu ture Perspective.” Advanced Science 7(8): 1903511–1903534. DOI: 10.1002/advs.201903511.
  • [42] J. R. Ferrell, M.-C. Kuo, J. A. Turner, A. M. Herring. 2008. “The Use of the Hetero poly Acids, H3PMo12O40 and H3PW12O40, for the Enhanced Electrochemical Oxidation of Methanol for Direct Methanol Fuel Cells.” Electrochimica Acta 53(14): 4927–4933. DOI: 10.1016/j.electacta.2008.01.102.
  • [43] R. Włodarczyk, M. Chojak, K. Miecznikowski, A. Kolary, P. J. Kulesza, R. Marassi. 2006. “Electroreduction of Oxygen at Polyoxometallate-Modified Glassy Carbon-Supported Pt Nanoparticles.” Journal of Power Sources 159(2): 802–809. DOI: 10.1016/j.jpowsour.2005.11.061.
  • [44] Z. Zeb, Y. Huang, L. Chen, W. Zhou, M. Liao, Y. Jiang, H. Li, L. Wang, L. Wang, H. Wang, T. Wei, D. Zang, Z. Fan, Y. Wei. 2023. “Comprehensive Overview of Polyoxometalates for Electrocatalytic Hydrogen Evolution Reaction.” Coordination Chemistry Reviews 482: 215058. DOI: 10.1016/j.ccr.2023.215058.
  • [45] Z.-H. Wang, X.-F. Wang, Z. Tan, X.-Z. Song. 2021. “Polyoxometalate/Metal Organic Framework Hybrids and Their Derivatives for Hydrogen and Oxy gen Evolution Electrocatalysis.” Materials Today Energy 19: 100618. DOI: 10.1016/j.mtener.2020.100618.
  • [46] M. Sarnowska, K. Bieńkowski, P. J. Barczuk, R. Solarska, J. Augustyński. 2016. “Highly Efficient and Stable Solar Water Splitting at (Na)WO3 Photoanodes in Acidic Electrolyte Assisted by Non-Noble Metal Oxy gen Evolution Catalyst.” Advanced Energy Materials 6(14): 1600526. DOI: 10.1002/aenm.201600526.
  • [47] X. Xie, Y. Nie, S. Chen, W. Ding, X. Qi, L. Li, Z. Wei. 2015. “A Catalyst Superior to Carbon-Supported-Platinum for Promotion of the Oxygen Reduction Reac tion: Reduced-Polyoxometalate Supported Palladium.” Journal of Materials Chemistry A 3(26): 13962–13969. DOI: 10.1039/c5ta02196k.
  • [48] Q. Li, L. Zhang, J. Dai, H. Tang, Q. Li, H. Xue, H. Pang. 2018. “Polyoxometal ate-Based Materials for Advanced Electrochemical Energy Conversion and Storage.” Chemical Engineering Journal 351: 441–461. DOI: 10.1016/j.cej.2018.06.074.
  • [49] A. A. Ensafi, E. Heydari-Soureshjani, M. Jafari-Asl, B. Rezaei. 2016. “Polyoxometalate-Decorated Graphene Nanosheets and Carbon Nanotubes, Powerful Electrocatalysts for Hydrogen Evolution Reaction.” Carbon 99: 398–406. DOI: 10.1016/j.carbon.2015.12.045.
  • [50] A. Saccà, A. Carbone, R. Pedicini, M. Marrony, R. Barrera, M. Elomaa, E. Passalacqua. 2008. “Phosphotungstic Acid Supported on a Nanopow dered ZrO2 as a Filler in Nafion-Based Membranes for Polymer Electrolyte Fuel Cells.” Fuel Cells 8(3–4): 225–235. DOI: 10.1002/fuce.200800009.
  • [51] W. Ali Shah, S. Ibrahim, S. Abbas, L. Naureen, M. Batool, M. Imran, M. Arif Nadeem. 2021. “Nickel Containing Polyoxometalates Incorporated in Two Different Metal-Organic Frameworks for Hydrogen Evolution Reaction.” Journal of Environmental Chemical Engineering 9(5): 106004. DOI: 10.1016/j.jece.2021.106004.
  • [52] O. Savadogo, D. L. Piron. 1990. “New Hydrogen Cathodes in Acid Medium: Case of Nickel Electrodeposited with Heteropolyacids (HPAs).” Inter national Journal of Hydrogen Energy 15(10): 715–721. DOI: 10.1016/03603199(90)90002-G.
  • [53] M. Kourasi. 2015. Heteropolyacids and Non-Carbon Electrode Materials for Fuel Cell and Battery Applications. Doctoral thesis. University of Southamp ton, Engineering and the Environment.
  • [54] K. Giza. 2022. “Electrochemical Characterization of C45 Carbon Black-H3P- -Mo12O40-Polyvinylidene Fluoride System.” Ochrona przed Korozją 65(11): 340–343. DOI: 10.15199/10.2022.11.1.
  • [55] T. Zhang, S. Weng, X. Wang, Z. Zhang, Y. Gao, T. Lin, Y. Zhu, W. Zhang, C. Sun. 2022. “Platinum Atomic Clusters Embedded in Polyoxometalates-Carbon Black as an Efficient and Durable Catalyst for Hydrogen Evolution Reac tion.” Journal of Colloid and Interface Science 624: 704–712. DOI: 10.1016/j.jcis.2022.06.018.
  • [56] K. Giza. 2019. “Communication – A New Catalytic Application of H3PMo12O40 in the Performance of Hydride Electrode for Ni-MH Battery.” Journal of The Electrochemical Society 166: A3332–A3334. DOI: 10.1149/2.0751914jes.
  • [57] K. Giza, E. Owczarek, A. Miszczyk. 2023. “The Effect of C45 Carbon Black-Phosphomolybdic Acid Nanocomposite on Hydrogenation and Corrosion Resistance of La2Ni9Co Hydrogen Storage Alloy.” Energies 16(10): 4002. DOI: 10.3390/en16104002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-67efe4ec-8304-40df-90b5-18d30acddf05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.