Czasopismo
2019
|
Vol. 39, Fasc. 1
|
75--84
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The current work deals with the granular media equation whose probabilistic interpretation is the McKean-Vlasov diffusion. It is well known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proved that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result which will be presented here.
Czasopismo
Rocznik
Tom
Strony
75--84
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Université Jean Monnet, Saint-Étienne and Institut Camille Jordan, Lyon, 23, rue du docteur Paul Michelon, CS 82301, 42023 Saint-Étienne Cedex 2, France, julian.tugaut@univ-st-etienne.fr
Bibliografia
- [1] S. G. Bobkov, I. Gentil, and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 80 (7) (2001), pp. 669-696.
- [2] F. Bolley, I. Gentil, and A. Guillin, Uniform convergence to equilibrium for granular media, Arch. Ration. Mech. Anal. 208 (2) (2013), pp. 429-445.
- [3] J.-F. Collet and F. Malrieu, Logarithmic Sobolev inequalities for inhomogeneous semigroups, ESAIM Probab. Stat. 12 (2008), pp. 492-504.
- [4] P. Del Moral and J. Tugaut, Uniform propagation of chaos and creation of chaos for a class of nonlinear diffusions (2013), https://hal.archives-ouvertes.fr/hal-00798813.
- [5] S. Herrmann, P. Imkeller, and D. Peithmann, Large deviations and a Kramers’ type law for self-stabilizing diffusions, Ann. Appl. Probab. 18 (4) (2008), pp. 1379-1423.
- [6] S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl. 120 (7) (2010), pp. 1215-1246.
- [7] S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab. 15 (2010), pp. 2087-2116.
- [8] S. Herrmann and J. Tugaut, Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small-noise limit, ESAIM Probab. Stat. 16 (2012), pp. 277-305.
- [9] M. Ledoux, The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse Math. (6) 9 (2) (2000), pp. 305-366.
- [10] H. P. McKean, Jr., A class of Markov processes associated with nonlinear parabolic equations, Proc. Natl. Acad. Sci. USA 56 (1966), pp. 1907-1911.
- [11] H. P. McKean, Jr., Propagation of chaos for a class of nonlinear parabolic equations, in: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, VA, 1967, pp. 41-57.
- [12] F. Otto and C. Villani, Comment on: “Hypercontractivity of Hamilton-Jacobi equations”, J. Math. Pures Appl. (9) 80 (7) (2001), pp. 697-700.
- [13] J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab. 41 (3A) (2013), pp. 1427-1460.
- [14] J. Tugaut, Self-stabilizing processes in multi-wells landscape in Rd – Convergence, Stochastic Process. Appl. 123 (5) (2013), pp. 1780-1801.
- [15] J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics 86 (2) (2014), pp. 257-284.
- [16] J. Tugaut, Self-stabilizing processes in multi-wells landscape in Rd – Invariant probabilities, J. Theoret. Probab. 27 (1) (2014), pp. 57-79.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-67ae134c-34c0-41b1-ac47-d6dd4557b97e