Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | R. 26, nr 6 | 515--530
Tytuł artykułu

Właściwości materiałów budowlanych zastosowanych w historycznej konstrukcji murowanej meczetu Haci Hasan Feyzi

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Properties of the bearing construction materials used in a historical masonry structure of Haci Hasan Feyzi mosque
Języki publikacji
PL EN
Abstrakty
PL
Nieuniknione jest określenie zachowania się zabytkowych konstrukcji w przypadku trzęsienia ziemi i podjęcie niezbędnych środków ostrożności w celu ochrony historycznych konstrukcji murowanych, znajdujących się w aktywnej strefie trzęsienia ziemi. Pierwszym etapem oceny wytrzymałości historycznych budynków murowanych na trzęsienia ziemi, jest szczegółowa informacja o takich budynkach. Dlatego też ta praca ma na celu zbadanie właściwości materiałowych historycznego budynku na podstawie badania substancji nierozpuszczalnych w kwasie, oceny pH i przewodnictwa elektrycznego. Ponadto zastosowano rentgenowską spektrometrię fluorescencyjną [XRF] i dyfrakcję rentgenowską [XRD] oraz analizę termiczną [TG/ DTG], a także petrograficzną, w celu oznaczenia składu fazowego. Oznaczono także gęstość, masową absorpcję wody, objętościową absorpcję wody, gęstość właściwą, porowatość oraz zbadano wytrzymałość pod obciążeniem jednoosiowym. Ustalono, że występujące większe wtrącenia są kwarcytem, który jest skałą metamorficzną o dużej wytrzymałości na ściskanie, składającą się z minerałów bogatych w krzemionkę. Badane zaprawy murarskie nie wykazują właściwości hydraulicznych, kruszywo nie ma właściwości pucolanowych, a materiałem wiążącym stosowanym w zaprawach, jest stosunkowo czyste wapno.
EN
It is inevitable to determine the earthquake performance of historical structures and to take the necessary precautions to protect historical masonry structures, located in an active earthquake zone. The first stage of evaluating the earthquake performance of historical masonry buildings is a detailed information about such buildings. Therefore, this study aims to investigate material properties of a historical building by means of acid loss, pH, electrical conductivity, X-ray fluorescence spectrometry [XRF], thermal analysis [TG/DTG], petrographic analysis, X-ray diffraction [XRD], density, mass water absorption, volume water absorption, specific mass, porosity and uniaxial loading tests. It has been determined that stones are quartzite, which is a metamorphic rock with high compressive strength, composed of quartz minerals. Examined masonry mortar does not show hydraulic properties, the aggregates are not pozzolanic aggregates and the binder material used in mortars is pure lime.
Wydawca

Czasopismo
Rocznik
Strony
515--530
Opis fizyczny
Bibliogr. 48 poz., il., tab.
Twórcy
autor
  • Department of Architecture, Faculty of Engineering and Architecture Mehmet Akif Ersoy University, Burdur, Turkey, asolak@mehmetakif.edu.tr
Bibliografia
  • 1. K.R. Demircan, G. Kaplan, A.I. Unay, Determination of The Physical and Mechanical Properties of the Materials Used in The Northern City Walls of Historical Sinop Castle. Mater. Sci. Eng. 471, 1-10 (2019). doi: 10.1088/1757-899X/471/8/082039
  • 2. Venice. International Charter for the Conservation and Restoration of Monuments and Sites. 1964. http://www.icomos.org.tr. (March. 2014)
  • 3. A. Güleç, A. Ersen, Characterization of Ancient Mortars: Evaluation of Simple and Sophisticated Methods. J. Archit. Conserv. 1, 56-67 (1998).
  • 4. H. Böke, S. Akkurt, B. İpekoğlu, Properties of mortars and plasters used in historical buildings. Struct. J. 69, 90-95 (2004).
  • 5. B. Sayı, Determination of Material Properties of Historical Masonry Buildings and Application Recommendations. Dicle Univ. J. Eng. 7(3) 387-398 (2016).
  • 6. A.E. Candeias, P. Nogueira, J. Mirao, A.S. Silva, R. Veiga, M.G. Casal, I. Ribeiro, A.I. Seruya, Characterization of ancient mortars: Present methodology and future perspectives. Chairmen of the European Research Councils. Chemistry Comittee. Evora University. National Laboratory of Civil Engineering (LNEC). www.conservarcal.lnec.pt. 2004.
  • 7. P. Ellis, The analyses of mortar: the past 20 years. Historic Churches. (2002) www.buildingconservation.com.
  • 8. E.S. Goins, Standard practice for determining the components of historic cementitious materials. University of Delaware, USA (2002).
  • 9. I.P. Pekmezci, Characterization of Mortars Used in Some Historical Buildings in Cukurova Region (Cilicia) and Recommendations for Repair Mortars. ITU Institute of Science, PhD Thesis (2012).
  • 10. A. Güleç Investigation of Some Historical Monument Mortars and Plasters. PhD Thesis. Istanbul Technical University Institute of Science, Istanbul (1992).
  • 11. E. Gürdal, G.K. Altaç, S.A. Özgünler, Investigation of the properties of the khorasan mortars used in the early Byzantine religious buildings in Istanbul. Restoration-Conservation-Archeology and Art History Yearbook. T.C. Prime Ministry General Directorate of Foundations. Istanbul I. Regional Directorate 2, 63-72 (2011).
  • 12. TS EN 933-1:2012(EN). Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method.
  • 13. H. Dursun, M.Y. Dizdar, Ş. Kırıştıoğlu, İ. Özcan, Y. Hamurkar, Soil and Land Classification Standards Technical Instruction and Related Legislation. Ministry of Agriculture and Rural Affairs General Directorate of Agricultural Production and Development Publication. Ankara (2008).
  • 14. J.M. Teutonico, A Laboratory Manual for Architectural Conservators. ICCROM. Rome. 1988.
  • 15. C.A. Black, D.D. Evans, L.E. Ensminger, J.L. White, F.E. Clark, Methods of Soil Analysis No. 9 in the Series Agronomy. American Society of Agronomy. Inc. Madison, Wisconsin, USA (1965).
  • 16. N.C. Brady, R.R. Weil, Elements of the Nature and Properties of Soils. 2nd ed. Pearson and Prentice Hall. New Jersey, (2004).
  • 17. R.E. Means, J.V. Parcher, Physical Properties of Soils. Charles E. Merrill Publishing Co. Columbus, Ohio, USA (1963).
  • 18. E.P. Bertin, Principle and Practice of X-Ray Spectrometric Analysis. Second Edition Fourth Printing. Plenum Press, New York, London (1984).
  • 19. H. Willard, J. Dean, L. Merrit Jr., F.A. Settle. Jr., Instrumental Methods of Analysis. Sixth Edition. Van Nostrand Co, New York (1981).
  • 20. B. Aydoğan. N. Nazım Usta, Investigation of the Effects of Barite Addition to Rigid Polyurethane Foam Materials on Thermal Conductivity and Thermal Degradation Behavior. J. Adv. Techn. Sci. 7(1), (2018).
  • 21. G. Biscontin, M.P. Birelli, E. Zendri, Characterization of binders employed in the manufacture of Venetian historical mortars. J. Cultural Herit. 3(1), 31-37 (2002).
  • 22. A. Bakolas, G. Biscontin, A. Moropoulou, E. Zendri, Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochim. Acta. 321(1-2), 151-160 (1998).
  • 23. A. Moropoulou, A. Bakolas, K. Bisbikou, Investigation of the technology of historic mortars. J. Cultural Herit. 1(1), 45-58 (2000).
  • 24. A.S. Silva, J.M. Ricardo, M. Salta, P. Adriano, J. Mirao, A.E. Candeias, S. Macias, Characterization of Roman mortars for the historical town of Mertola. Eduardo Tooroja Institute (CSIC). Madrid. Spain. www.conservarcal.lnec.pt (2004).
  • 25. A. Güleç, A. Ersen, Characterization of Ancient Mortars: Evaluation of Simple and Sophisticated Methods. J. Archit. Conserv. 1, 56-67 (1998).
  • 26. RILEM. 2005. Investigative methods fort he characterisation of historic mortars. in Materials and Structures 38. Part 1 and Part 2. s. 761-769. 771-780.
  • 27. B. Middendorf, J.J. Hughes, K. Callebaut, G. Baronio, I. Papayianni, Investigative methods for the characterisation of historic mortars - Part 1: Mineralogical characterisation. Mater. Struct. 38(8), 761-769 (2005).
  • 28. A. Demirer, D. Alaygut, Magmatic Rocks. TPAO Research Center Group Presidency Education Publications 26, Ankara (1993).
  • 29. TS 699. Methods of Testing for Natural Building Stones. Turkish Standards Institute. Ankara. 1987.
  • 30. TS EN 1926. Natural stone test methods - Determination of uniaxial compressive strength. Turkish Standards Institute. Ankara. 2007.
  • 31. TS EN 1015-11/A1. Methods of Test for Mortar for Masonry - Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. Turkish Standards Institute. Ankara. 2007.
  • 32. Y. Uygun Investigation of Material Properties of Historical Kaya Bey. İbrahim Bey and Halhallı Mosques in Balıkesir. Master Thesis. Balıkesir University Institute of Science and Technology, Balıkesir (2019).
  • 33. S. Ulukaya, Production of New Materials Suitable for Historical Lime Mortar Properties and Determination of Material Parameters for Numerical Analysis. PhD Thesis. Yıldız Technical University, Institute of Science (2016).
  • 34. M. Dayı, Investigation of Khorasan Mortar Used in Historical Buildings and Production of Alternative Khorasan Mortar. PhD Thesis. Gazi University Institute of Science and Technology, Ankara Turkey (2017).
  • 35. S. Öngen, N. Aysal, M. Baykayır, M.O. Şahin, Aydos Castle Building Blocks. Mortar and Plaster Petrography and Resource Areas. Restor. Conserv. J. 8, 30-36 (2012).
  • 36. C. Oguz, F. Turker, N.U. Kockal, Construction Materials Used in the Historical Roman Era Bath in Myra. Sci. World. J. 2014, 536105 (2014). http://dx.doi.org/10.1155/2014/536105
  • 37. G. Kahraman, Investigation of Early Byzantine Khorasan Mortars İtü Master’s Thesis (2008).
  • 38. A.A. Akyol, N. Derakhshan Houreh, Archaeometric Analyses of Antalya Müsellim Mosque. Academ. Art Des. Sci. J. 5(11) (2020).
  • 39. M. Bayazit, D. Yıldız, Archaeometric Characterization of Plaster and Mortar Samples of Fatih Paşa Mosque (Diyarbakır). DÜMF J. Eng. 10(2) 709-720 (2019).
  • 40. A. Ersen, A. Güleç, Analysis of Historical Mortars with Simple and Advanced Analysis Methods. J. Restor. Conserv. Stud. 3, 65-73 (2009).
  • 41. A. Gözde, Investigation of Mortars Used in Mosaic House (Tripolis-Denizli) Space Walls Using Archaeometric Methods. PAU Archeology Institute Master’s Thesis, (2019).
  • 42. F.M. Lea, Investigations on Pozzolanas. Building Research. Technical Paper 27, 1-63 (1940).
  • 43. A. Moropoulou, A. Bakolas, S. Anagnostopoulou, Composite Materials in Ancient Structures. Cem. Concr. Comp. 27, 295-300 (2005).
  • 44. D. Akbulut Ekşi, A proposal for the selection of the mortars to be used in the repair of historical buildings. Doctoral Thesis. Y.T.Ü. Institute of Science, Istanbul (2006).
  • 45. D.V. Deere, R.L. Miller, Engineering Classification and Index Properties of Intact Rock. Department of Civil Engineering. University of Illinois, Urbana (1966).
  • 46. ASTM C 616. 1989. “Standard Specification for Quartz-Based Dimension Stone”. Annual Book of ASTM Standards.
  • 47. Ö. Çizer, K.V. Balen, D.V. Gemert, Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 133, 241-247 (2010).
  • 48. H. Kozlu, Characterization of Historical Mortars and Features of Restoration Mortars In Kayseri District. PhD thesis. ITU Institute of Science and Technology (2010).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-67ad833a-6e95-4c4c-9346-6f78bc86383e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.