Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 17, no. 4 | 179--190
Tytuł artykułu

New Algorithm for Modeling of Bronchial Trees

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents new conception of 3D model of human bronchial tubes, which represents bronchial tubes extracted from CT images of the chest. The new algorithm which generates new model is an extension of the algorithm (basic algorithm) proposed by Hiroko Kitaoka, Ryuji Takaki and Bela Suki. The basic model has been extended by geometric deformations of branches and noise which occur in bronchial trees extracted from CT images. The article presents comparison of results obtained with the use of the new algorithm and the basic one. Moreover, the discussion of usefulness of generated new models for testing of algorithms for quantitative analysis of bronchial tubes based on CT images is also included.
Słowa kluczowe
Wydawca

Rocznik
Strony
179--190
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Academy of Information Technology, Department of Expert Systems and Artificial Intelligence, Lodz, Poland, kacperp@wsinf.edu.pl
  • Academy of Information Technology, Department of Expert Systems and Artificial Intelligence, Lodz, Poland
  • Technical University of Lodz, Computer Engineering Department, Lodz, Poland
  • Technical University of Lodz, Computer Engineering Department, Lodz, Poland
  • Universite Paris-Est, LIGM-A3SI-ESIEE 2, Noisy le Grand, France
Bibliografia
  • [1] Z. Aktouf, G. Bertrand, L. Perroton, A threedimensional holes closing algorithm Pattern Recognition Letters, Elsevier, Vol. 23, No. 5, pp. 523-31, 2002
  • [2] G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, Vol. 15, No. 10, pp. 1003-1011, 1994
  • [3] J. Chaussard, M. Couprie, H. Talbot, Robust skeletonization using the discrete lambda-medial axis, Pattern Recognition Letters, Vol. 32, No. 9, pp. 1384-1394, 2011
  • [4] W.J.R. Chen, D.S.P. Shiah, C.S. Wang, A threedimensional model of the upper tracheobronchial tree, Bulletin of Mathematical Biology, Vol. 42, No. 6, pp. 847-859, 1980
  • [5] M. Couprie, G. Bertrand, Topology preserving alternating sequential filter for smoothing 2D and 3D objects, Journal of Electronic Imaging, Vol. 13, No. 4, pp. 720-730, 2004
  • [6] M. Eden, A two-dimensional growth process, Dynamics of fractal surfaces, pp. 265-283, 1961
  • [7] H.L. Gillis, K.R. Lutchen, How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: a morphometric model, Annals of biomedical engineering, Vol. 27, No. 1, pp. 14-22, 1999
  • [8] H. Gray, Anatomy of the Human Body, Philadelphia, Lea & Febiger, 1918
  • [9] K. Horsfield, G. Dart, D.E. Olson, G.F. Filley, G. Cumming, Models of the human bronchial tree, Journal of Applied Physiology, Vol. 31, No. 2, pp. 207-217, 1971
  • [10] M.H. Tawhai, A.J. Pullan, P.J. Hunter, Generation of an anatomically based three-dimensional model of the conducting airways, Annals of biomedical engineering, Vol. 28, No. 7, pp. 793-802, 2000
  • [11] H. Kitaoka, R. Takaki B. Suki, A three-dimensional model of the human airway tree, Journal of Applied Physiology, Vol. 87, No. 6, pp. 2207-2217, 1999
  • [12] T.B. Martonen, Y. Yang, M. Dolovich, Definition of airway composition within gamma camera images. Journal of thoracic imaging, Vol. 9, No. 3, pp. 188-197, 1994
  • [13] T.R. Nelson, D.K. Manchester, Modeling of lung morphogenesis using fractal geometries, IEEE Trans. Med. Imag., Vol. 7, pp. 321-327, 1988
  • [14] K. Palagyi, A. Kuba, A 3D 6-subiteration thinning algorithm for extracting medial lines, Pattern Recognit. Lett., Vol. 19, pp. 613-627, 1998
  • [15] K. Palagyi, J. Tschirren, E.A. Hoffman, M. Sonka, Quantitative analysis of pulmonary airway tree structures, Computers in Biology and Medicine, Vol. 36, No. 9, pp. 974-996, 2006
  • [16] O.G. Raabe, H.C. Yeh, H.M. Schum, R.F. Phalen, Tracheobronchial Geometry-Human, Dog, Rat, Hamster. Albuquerque, NM: Inhalation Toxicology Research Institute, Lovelace Foundation for Medical Evaluation and Research. Report LF-53, 1976
  • [17] J. Serra, Image analysis and mathematical morphology, Academic Press, London, 1982
  • [18] A. Skalski, M. Socha, M. Duplaga, K. Duda, T. Zieli´nski, 3D Segmentation and Visualisation of Mediastinal Structures Adjacent to Tracheobronchial Tree from CT Data, Advances in Intelligent and Soft Computing, Vol. 69 523-534, 2010
  • [19] E.R. Weibel, Morphometry of the human lung, New York: Academic, 1963
  • [20] www.vtk.org
  • [21] www.bioengineering-research.com/software/vtkbioeng
  • [22] C. van Ertbruggen, C. Hirsch, M. Paiva, Anatomically based three dimensional model of airways to simulate flow and particle transport using computational fluid dynamics, Journal of Applied Physiology, Vol. 98, No. 3, pp. 970-980, 2005
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-67a84472-ca20-44e1-84df-c2e3e7014d68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.