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1. Introduction

In this work, we present a new approach dealing with weighted pseudo almost
periodic functions with infinite delay and their applications in evolution equations
and partial functional differential equations. Here we use the measure theory
to define an ergodic function and we investigate many interesting properties of
such functions. Weighted pseudo almost periodic functions started recently and
becomes an interesting field in dynamical systems. The study of existence of
almost periodic, asymptotically almost periodic, almost automorphic, asymptoti-
cally almost automorphic and pseudo almost periodic solutions is one of the most
attractive topics in the qualitative theory of differential equations due both to
its mathematical interest and applications in physics, mathematical biology, and
control theory, among other areas. Most of these problems need to be studied
in abstract spaces and the operators are defined over non-dense domains. In this
context the literature is very scarce (see [1,2,4] and the bibliography therein).

In this work, we study the existence and uniqueness of (u,v)-pseudo almost
periodic and automorphic solutions of infinite class for the following neutral partial
functional differential equation

u'(t) = Au(t) + L(ue) + f(t) for t € R, (1)

where A is a linear operator on a Banach space X satisfying the Hille-Yosida
condition, that is, there exist My > 1 and w € R such that |w, +oo[C p(A) and

My

IR(\, A)"| < G—wr

forn e N and A > w,
where p(A) is the resolvent set of A and R(A\, A) = (A\] — A)~! for A € p(A). In
sequel, without lost of generality, we suppose that My = 1. The phase space B
is a normed linear space of functions mapping |—oo, 0] into X satisfying axioms
which will be described in the sequel, for every ¢ > 0, the history u; € B is defined
by

us(0) = u(t +6) for 6 €]—00,0],

f B — X is a continuous function and L is a bounded linear operator from B
into X. In the literature devoted to equations with finite delay, the state space is
the space of all continuous functions on [—r,0], r > 0, endowed with the uniform
norm topology.
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When the delay is finite some recent contributions concerning pseudo almost
periodic solutions for abstract differential equations similar to equation (1) have
been made. For example in [2] the authors have shown that if the inhomogeneous
term f depends only on variable ¢ and it is a pseudo almost periodic function,
then equation (1) has a unique pseudo almost periodic solution. In [4] the authors
have proven that if f : R x Xy — X is a suitable continuous function, where
Xo = M, the problem

2'(t) = Ax(t) + f(t,z(t)), teR

has a unique pseudo almost periodic solution, while in [1] the authors have treated
the existence of almost periodic solutions for a class of partial neutral functional
differential equations defined by a linear operator of Hille-Yosida type with non-
dense domain. In [3], the authors studied the existence and uniqueness of pseudo
almost periodic solutions for a first-order abstract functional differential equation
with a linear part dominated by a Hille-Yosida type operator with a non-dense
domain.

In [9], the authors introduce some new classes of functions called weighted
pseudo-almost periodic functions, which implement in a natural fashion the clas-
sical pseudo-almost periodic functions due to Zhang [15-17]. Properties of these
weighted pseudo-almost periodic functions are discussed, including a composition
result for weighted pseudo-almost periodic functions. The results obtained are
subsequently utilized to study the existence and uniqueness of a weighted pseudo-
almost periodic solution to the heat equation with Dirichlet conditions.

In [6], the authors present new approach to study weighted pseudo almost peri-
odic functions using the measure theory. They present a new concept of weighted
ergodic functions which is more general than the classical one. Then they establish
many interesting results on the functional space of such functions like complete-
ness and composition theorems. The theory of their work generalizes the classical
results on weighted pseudo almost periodic functions. More details can be found
in book [10] where the authors give basic definitions and facts, concerning the
subject discussed in the current paper.

The aim of this work is to prove the existence of (u, v)-pseudo almost periodic
and automorphic solutions of equation (1) when the delay is distributed on |—o0, 0].
Our approach is based on the spectral decomposition of the phase space developed
in [3] and a new approach developped in [6].

This work is organised as follow, in Section 2 we recall some prelimary results
on spectral decomposition. In Section 3, we recall some prelimary results on
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(s, v)-pseudo almost periodic functions and neutral partial functional differential
equations that will be used in this work. In Section 4, we give some properties of
(1, v)-pseudo almost periodic functions of infinite class. In Section 5, we discuss
the main result of this paper. Using the strict contraction principle we show the
existence and uniqueness of (u, v)-pseudo almost periodic solution of infinite class
for equation (1). Section 6 is devoted to some applications arising in population
dynamics.

2. Variation of constants formula and spectral
decomposition

In this work, we assume that the state space (B, |-|g) is a normed linear space
of functions mapping ]—o0, 0] into X. In what follows, we give some examples of

normed linear space (B, | - |5).

Example 1. B = BC, where BC is the space of bounded continuous functions
defined from |—o0,0] to X, with the the following norm

|olg = sup |¢(6)] for all p € B.
0<0

Example 2. B=C,, v > 0, where

Cy={peC(-0,0;;X): lim ?p(f) existin X}

60— —o0

with the the following norm
|l = sup 7 (6)].
6<0

We assume that B satisfies the following fundamental axioms:

(A1) There exist a positive constant H and functions K(+), M(-) : R* — R*, with
K continuous and M locally bounded, such that for any ¢ < 0 and a > 0, if
u:]—00,a] = X, u, € B, and u(-) is continuous on [0, o + a], then for every
t € [0, 0 + a] the following conditions hold

(i) w € B,
(ii) |u(t)| < H|u¢|g, which is equivalent to |p(0)| < Hlp|p for every ¢ € B,
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(iil) |ue|lg < K(t — o) s<ug lu(s)| + M(t — o)|us|B.
o<s<t

(A3) For the function u(-) in (A1), t — uy is a B-valued continuous function for
t€lo,0+al

(B) The space B is a Banach space.

In the whole of this work, we suppose that B satisfies axioms (A1), (As)
and (B). We also assume that:

(C1) If (¢n)n>o is a sequence in B such that ¢, — 0 in B as n — 400, then for
all <0, (vn(8))n>0 converges to 0 in X.

Let C(]—00,0], X) be the space of continuous functions from ]—oo, 0] into X. We
suppose the following assumptions:

(C2) BC C(]—,0], X).

(Cs) There exists A\g € R such that, for all A € C with ReA > A\g and z € X we
have e*z € B, where (e*z)() = e*z for § €]—00,0] and € X and

A.
KO = sup |6 x|B < Q.
ReA>Ap, zeX |7
x#0

To equation (1), we associate the following initial value problem

%ut = Aug + L(ug) + f(2) for t > 0,

UOZSOer

where f: Rt — X is a continuous function.
Let us introduce the part Ag of the operator A in D(A) which defined by

D(Ap) = {z € D(A): Az € D(A)}
Apz=Az for x € D(Ay).

We make the following assumption:

(Hp) A satisfies the Hille-Yosida condition.

Lemma 3. [1] Ay generates a strongly continuous semigroup (To(t))i>0 on D(A).
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The phase space Ba of equation (2) is defined by

Ba={peB:p(0) € D(A)}.
For each t > 0, we define the linear operator U(t) on B4 by
Ut) = vl )
where v.(+, ) is the solution of the following homogeneous equation

dt

d
—uv = Avg + L(vy) for t > 0,
vp = € B.

Proposition 4. [3] (U(t))i>0 is a strongly continuous semigroup of linear opera-
tors on Ba. Moreover, (U(t))i>o satisfies, fort > 0 and 6 €]—00,0], the following
translation property

_ ) UE+0)e)0)  fort+6=0,
Uwe) ) = { p(t+0) for t +6 <0.

Theorem 5. [3] Assume that B satisfies (Ay), (Ag), (B), (Cy) and (Cs). Then
Ay defined on Ba by

D(A) = {0 € C*(|=00,01: X) N Ba: ¢' € Ba, (0) € D(4)
and ¢/(0) = Ap(0) + L(p) |
Aup =" for ¢ € D(Ay).

is the infinitesimal generator of the semigroup (U(t))i>0 on Ba.
Let (Xo) be the space defined by
(Xo) ={Xoz: x € X}
where the function Xz is defined by

0 iffe]—o0,0[,

(Xox)(8) _{ 0 =0
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The space Ba ® (Xo) equipped with the norm |¢ + Xq c|g = |¢|5 + |c| for (¢, ¢) €
Ba x X is a Banach space and consider the extension Ay defined on B & (Xo)
by

D(Ay) = { € C'(|=00,0]; X): ¢ € D(A) and ' € D(4) |

Aup = ¢+ Xo(Ap+ L(p) - ¢).
Lemma 6. [3]/ Assume that B satisfies (A1), (Ag2), (B), (C1), (Cg) and (Cs).
Then, Ay satisfies the Hille-Yosida condition on B & (Xo).

Now, we can state the variation of constants formula associated to equation (2).
Let Cpp be the space of X-valued continuous function on |—oo, 0] with compact
support. We assume that:

(D) If (pn)n>o is a Cauchy sequence in B and converges compactly to ¢ on
]—00,0], then ¢ € B and |¢, — ¢| — 0.

Theorem 7. [3] Assume that (Cy), (Cg) and (Cg) hold. Then the integral
solution u of equation (2) is given by the following variation of constants formula

t

uy=UR) e+ lim M(t—s)EA(Xof(s)) ds fort >0,
A—+o0 [

where By = A(A — Ay)~ 1.
Let (So(t))i>0 be the strongly continuous semigroup defined on the subspace
By = {p € B: p(0) = 0}
by

Pt +6)  ift+

0 <
(So(t) ) (0) = { 0 ift+0>

Definition 8. Assume that the space B satisfies axioms (B) and (D), B is said
to be a fading memory space, if for all ¢ € By,

‘So(t)‘—>0 as t — +oo in By.
Moreover, B is said to be a uniform fading memory space, if

|So(t)| =0 as t — 4o0.
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Lemma 9. If B is a uniform fading memory space, then we can choose the func-
tion K constant and the function M such that M(t) — 0 as t — +o0.

Proposition 10. If the phase space B is a fading memory space, then the space
BC(]—00,0], X) of bounded continuous X -valued functions on |—o0,0] endowed
with the uniform norm topology, is continuous embedding in B. In particular B
satisfies (Cs), for A\g > 0.

For the sequel, we make the following assumption:

(Hy) To(t) is compact on D(A) for every t > 0.

(Hz2) B is a uniform fading memory space.

Theorem 11. [3] Assume that B satisfies (A1), (Ag), (B), (C1) and (Hyp), (Hy),
(Hpz) hold. Then the semigroup (U(t))i>o0 is decomposed on Ba as follows

U(t) =Us(t) + Us(t) fort >0,

where (U1(t))i>0 s an exponentially stable semigroup on Ba, which means that
there are positive constants oy and No such that

|L{1(t)‘ < Noe @ |y fort >0 and p € By
and (Ua(t))i>0 is compact for for every t > 0.

We have the following result on the spectral decomposition of the phase
space B4.

Theorem 12. [3] Assume that B satisfies (A;), (Ag), (B), (C1), and (Hp),
(Hy), (Hg) hold. Then the space Ba is decomposed as a direct sum

Ba=SeU

of two U(t) invariant closed subspaces S and U such that the restricted semigroup
on U is a group and there exist positive constants M and w such that

‘gﬁe_“’t‘gd fort =20 and ¢ € S,
| <M <0

_e‘*’t|g0| fort and ¢ € U,

where S and U are called the stable and unstable space respectively.
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3. (i, v)-Pseudo almost periodic functions

In this section, we recall some properties about p-pseudo almost periodic
functions. The notion of u-pseudo almost periodicity is a generalization of the
pseudo almost periodicity introduced by Zhang [15-17]; it is also a generalization
of weighted pseudo almost periodicity given by Diagana [9]. Let BC(R; X) be
the space of all bounded and continuous function from R to X equipped with the
uniform topology norm.

We denote by N the Lebesgue o-field of R and by M the set of all positive
measures g on N satisfying pu(R) = 400 and p([a,b]) < oo, for all a,b € R, a < b.

Definition 13. A bounded continuous function ¢ : R — X is called almost pe-
riodic if for each € > 0, there exists a relatively dense subset of R denote by
K(e, ¢, X) such that |¢(t + 7) — ¢(t)| < € for all (t,7) € R x K(g, ¢, X).

We denote by AP(R; X), the space of all such functions.

Definition 14. Let X1 and X5 be two Banach spaces. A bounded continuous
function ¢ : R x X1 — Xo is called almost periodic in t € R uniformly in x € X
if for each € > 0 and all compact K C X1, there exists a relatively dense subset of
R denote by K(g, ¢, K) such that |p(t + 7,2) — ¢(t,x)| < e for allt € R, z € K,
7€ K(e, 9, K).

We denote by AP(R x X1; X5), the space of all such functions.
The next lemma is also a characterization of almost periodic functions.

Lemma 15. A function ¢ € C(R, X) is almost periodic if and only if the space of
functions {¢: 7 € R}, where (¢;)(t) = ¢(t+7), is relatively compact in BC(R; X).

In the sequel, we recall some preliminary results concerning the (u, v)-pseudo
almost periodic functions with infinite delay.
E(R; X, p,v) stands for the space of functions

+7
E(R; X, pv) = {ue BOR; X): lim_ m/ u(®)] du(t) = 0}.

—T
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To study delayed differential equations for which the history belong to B, we need
to introduce the space

E(R; X, p,v,00) =

= {u € BC(R; X): lim _ /+T ( sup |u(9)|) du(t) = 0}.

T+ V([_T7 T]) -7 e —00,t]

In addition to above-mentioned space, we consider the following spaces

E(R X Xl,XQ,M, l/) =

1 +
— {uEBC(RXXl;Xg): lim 7/ lu(t, z)|x, du(t):()},

e =) )

E(R X X1: Xo, 1, 1, 00) = {u € BO(R x X1: Xo):

+7
s [ )=o)
where in both cases the limit (as 7 — +00) is uniform in compact subset of Xj.

In view of previous definitions, it is clear that the spaces E(R; X, u, v, 00) and
E(R x Xy; Xa, u,v,00) are continuously embedded in E(R; X, p,v) and E(R x
X1, Xo, u,v), respectively. On the other hand, one can observe that a p-weighted
pseudo almost periodic functions is pu-pseudo almost periodic, where the measure
1 is absolutely continuous with respect to the Lebesgue measure and its Radon-
Nikodym derivative is p:

du(t) = p(t) dt

and v is the usual Lebesgue measure on R, i.e. v([—7,7]) = 27 for all 7 > 0.

Example 16. [6] Let p be a nonnegative A/-measurable function. Denote by p
the positive measure defined by

u(A) = /p(t) dt  for AeWN, (3)

A

where dt denotes the Lebesgue measure on R. The function p which occurs in
equation (3) is called the Radon-Nikodym derivative of p with respect to the
Lebesgue measure on R.
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Definition 17. Let pu,v € M. A bounded continuous function ¢ : R — X is
called (p,v)-pseudo almost periodic if ¢ = ¢1 + P2, where ¢ € AP(R, X) and
¢2 € E(R; X, p,v).

We denote by PAP(R; X, i, v) the space of all such functions.

Definition 18. Let pu,v € M and X1 and X5 be two Banach spaces. A bounded
continuous function ¢ : R x X1 — Xy is called uniformly (p,v)-pseudo almost
periodic if ¢ = ¢1 + ¢2, where ¢p1 € AP(R x X1;X2) and ¢2 € E(R x X1, Xo, 1, v).

We denote by PAP(R x X1; Xo, i, v), the space of all such functions.

Definition 19. u,v € M. A bounded continuous function ¢ : R — X is called
(1, v)-pseudo almost periodic of infinite class if ¢ = ¢1+ P2, where p1 € AP(R; X)
and ¢g € E(R; X, u,v,00). We denote by PAP(R; X, u, v, 0), the space of all such
functions.

Definition 20. y,v € M. Let Xy and X5 be two Banach spaces. A bounded
continuous function ¢ : R x X1 — Xo is called uniformly (p,v)-pseudo almost
periodic of infinite class if ¢ = ¢1 + P2, where 1 € AP(R x X1; X2) and ¢2 €
ER x X715 X, p, v, 00).

We denote by PAP(R x X1; X5, i, v,00), the space of all such functions.

4. Properties of (u,v)-pseudo almost periodic
functions of infinite class

From pu,v € M, we formulate the following hypothese.

p(l=7,7])

(Hg) Let p, v € M be such that limsup ————- = a < oo.
r—too V([=7,7])

We have the following result.

Lemma 21. Assume that (Hg) holds. The space E(R; X, p,v,00) endowed with
the uniform topology morm is a Banach space.

Proof. We can see that £(R; X, u, v, 00) is a vector subspace of BC(R; X). To com-
plete the proof, it is enough to prove that £(R; X, i, v, 00) is closed in BC(R; X).



26 D. Votsia, I. Zabsonre

Let (zp,)n be a sequence in £(R; X, p, v, 00) such that hIJIrl zn = 2z uniformly in R.
n—-+oo

From v(R) = +o0, it follows v([—7,7]) > 0 for 7 sufficiently large. Let ng € N
such that for all n > ng, ||zn — 2]|ec < €. Let n > ng, then we have

T /_+T (, 50, (0)]) dutt) <

T

<o | v (s Janl®) = 2(0) ) dut) +

-7 ]—o0,t]

+JF%$/M<SW %@DW@<

-7 e ]—o0,t]

<o | 7 (sup en(t) — 0)) du(t) +

-7 teR

+JF%$/H<SW %@DW@<

-7 e ]—o0,t]

ROt WS B e A
<len = 2l x BT 4 s [ (s [20l0)]) dit)

—T ]—00,t]

We deduce that

1 T
limsupi/ sup |z(0)|) du(t) < ae for any ¢ > 0.
ey L, (g ) 4

From the definition of PAP(R; X, i, v, 00), we deduce the following result.

Proposition 22. pu,v € M. The space PAP(R; X, u,v,00) endowed with the
uniform topology norm is a Banach space.

Next result is a characterization of (u, v)-ergodic functions of infinite class.

Theorem 23. Assume that (Hg) holds and let u,v € M and I be a bounded
interval (eventually I = (). Assume that f € BC(R,X). Then the following
assertions are equivalent:

i) feER, X, p,v,00).

N 1 —
D ST g (O 0 =0

]_Oovt]



Pseudo almost periodic solutions. .. 27

p({tel=ra\I sw |7(0)] >}
iii) For any e > 0, TEI_POO V([_:f_]]f\oj_’)t] =0.

Proof. The proof is made like the proof of Theorem 2.13 in [6].

i) < ii) Denote by A =v(I), B = / ( sup |f(0)]) du(t). We have A and B €
I 6€]—o0,t]
R, since the interval I is bounded and the function f is bounded and continuous.

For 7 > 0 such that I C [—7,7] and v([—7,7] \ I) > 0, we have

1
W=7\ D) /[_m]\, (9;350 y ()] dult) =

) m [/[r,r] (Ge]sggo,t] |f(9)|) dp(t) — B} =

([T, 7)) 1 B
R (o e o ey /[] (j 30 11O) dutt) = S ].

From above equalities and the fact that v(R) = +o00, we deduce that i) is equiv-
alent to

[T—— v (w0 17@1)auto) ~o.

T—too V([_T7 T]) -7 ]—o0,t]
that is ).
iii) = 1) Denote by AS and B¢ the following sets

Ai:{te[—r,r]\[: sup |f(0)|>5}
e ]—o0,t]

and

Biz{te[—T,T]\I: sup |f(0)|<e}.
€] —o0,t]

Assume that 4i¢) holds, that is

AE
lim p(AZ)

r—+too v([—7, 7]\ I) =0 (4)
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From the equality

(e 5@ =

= (5w @) du+

]—o0,t] B
we deduce that for 7 sufficiently large

(sup 1£6)]) dult),

: < Noe)—o0,]

1
D oy (o VO30 <

Ac Be
1l ) p(B2)

D Sun N D

By using (Hs), it follows that

1 +r
lim 7/ ( sup |f(9)|> du(t) < ae for any € > 0,
e

7400 V([_Ta T]) -7 ]—o00,t]

consequently i) holds.

1) = 4i1) Assume that 4i) holds. From the following inequality

/[_TJ]\I( sup |f(9)|>dﬂ(t) > /Ai (eesup |f(9)|>du(t)

6€]—o0,t] ]—00,t]
1 ‘1 w(AS)
Y /[_WN (, 5 , 1FO)du(®) > e iy

1 “ 1(A7)
AN /[_WN (, 5 1O du(t) > S,

for 7 sufficiently large, we obtain equation (4), that is iii). O

For 1 € M, we formulate the following hypotheses.

(H4) For all a, b and ¢ € R, such that 0 < a < b < ¢, there exist dy and g > 0
such that
|6| =00 = ﬂ(a+6ab+6) > O‘O,U'((Svc"_(s)'

(Hs) For all 7 € R, there exist > 0 and a bounded interval I such that

p{a+7:a € A}) < Bu(4) when A € N satisfies ANT = ().
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We have the following results due to [6].
Lemma 24. [6] Hypothesis (Hj) implies (Hy).

Proposition 25. [6]/ u,v € M satisfy (Hy) and f € PAP(R; X, pu,v) be such
that
f=g+h

where g € AP(R, X) and h € E(R, X, u,v). Then
{g(t), t e R} C {f(¢), t e R} (the closure of the range of f).

Corollary 26. [6] Assume that (H}) holds. Then the decomposition of a (p,v)-
pseudo almost periodic function in the form f = g+ ¢ where g € AP(R; X) and
o€ ER; X, u,v), is unique.

The following proposition is a consequence of Proposition 25.

Proposition 27. Let p,v € M. Assume (Hy) holds. Then the decomposition of
a (u, v)-pseudo-almost periodic function ¢ = ¢1 + ¢a, where ¢p1 € AP(R; X) and
dg € E(R; X, 1, v, 00), is unique.

Proof. In fact, since as a consequence of Corollary 26, the decomposition of a (u, v)-
pseudo-almost periodic function ¢ = ¢1 + @2, where ¢; € AP(R; X) and ¢g €
E(R; X, p,v), is unique. Since PAP(R; X, u,v,00) C PAP(R; X, p,v), we get the
desired result. O

Definition 28. Let pi,pu2 € M. We say that py is equivalent to ps, denoting
this as p1 ~ pa if there exist constants o and B > 0 and a bounded interval I
(eventually I = Q) such that

apr(A) < p2(A) < Bui(A), when A € N satisfies ANT = ().

From [6] ~ is a binary equivalence relation on M. The equivalence class of
a given measure u € M will then be denoted by

d(p)={weM: p~w}.
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Theorem 29. Let py, pio, V1,V € M. If ug ~ e and v ~ v, then
PAP(R; X, pi1,v1,00) = PAP(R; X, pa, va, 00).

Proof. Since p11 ~ p2 and v1 ~ v9 there exist some constants a1, ag, 51, B2 > 0 and
a bounded interval I (eventually I = ) such that oy p1(A) < pa(4) < By 1 (4)
and ag v1(A) < va(A) < Bavi(A) for each A € N satisfies ANT =0, i.e.
1 < 1 < 1
Bavi(A) = 1e(A) T agvi(A)

Since p1 ~ pz and N is the Lebesgue o-field, for 7 sufficiently large, we obtain

o1 g ({t e [-7m7I\I: sup |f(6) > 5})

€] —o0,t]

Bava([—7, 7\ 1)
1o ({t el|-r7]\I: sup |f(0) > 5})
6

€]—o00,t]

<

S (r N D) S
8 ul({t el-n7\I: sup |f(O)> s})
€] —o0,t]

S agvy([-7, 7]\ I)

By using Theorem 23 we deduce that E(R, X, pu1,1v1,00) = E(R, X, o, v2,00).
From the definition of a (u,rv)-pseudo almost periodic function, we deduce that
PAPR; X, p1,v1,00) = PAP(R; X, pig, va, 00). a

For p,v € M we denote
cl(p,v) = {wi, w2 € M: pp ~ wy and v ~ ws}.
Proposition 30. [8] Let p,v € M satisfy (Hs). Then PAP(R, X, u,v) is in-

variant by translation, that is f € PAP(R, X, u,v) implies fo, € PAP(R, X, u,v)
for all o € R.

In what follows, we prove some preliminary results concerning the composition
of (i, v)-pseudo almost periodic functions of infinite class.
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Theorem 31. Let p,v € M, ¢ € PAP(R X X1; Xo, pt,v,00) and h € PAP(R; X1,
W, v,00). Assume that there exists a function Ly : R — [0, 400[ satisfies

|¢(t,x1) - ¢(t,x2)| < Ly(t)|z1 — 22 for teR and for x1,20 € X5. (5)

If
1 T
v([=7,7]) /,T (9€?E§o¢] L¢(9)) du(t) < oo (©)
and 1 N
o () /_ (96]81_150 y L¢(9)) £(t) du(t) =0 )

for each & € E(R,u,v) and for almost 7 > 0, then the function t — ¢(t, h(t))
belongs to PAP(R; Xa, i, v, 00).

Proof. Assume that ¢ = ¢1 + @2, h = hy + he where ¢1 € AP(R x X7; X3),
P2 € E(RX X1; Xo, pu,v,00) and hy € AP(R; X1), ha € E(R; X1, 1, v, 00). Consider
the following decomposition

¢(t, h(t)) = du(t, ha(t)) + [¢(t, h(t)) — 6(t, ha(t))] + ¢a(t, hu(t)).

From [7,14], ¢1(-, h1(-)) € AP(R; X5). It remains to prove that both ¢(-,h(:)) —
¢('a hl()) and ¢2('a hl()) belong to E(R’ Xo, p, v, OO)
Using equation (5), it follows that

p({tel-nrl: sw [6(0.h(0)) — 9(60,m(9))] > c})

e —00,t]
v([=7.7])
p({tel-rr: sw (Lo(0)lh(0)]) > =})

o€ ]—o0,t]
v([=7.7])
u({t € [-7,7]: ( sup L¢(9))( sup |h2(9)|) > 5})

€ ]—o0,t] € ]—o0,t]

v([=7,7])

Since hg is (u, v)-ergodic of infinite class, Theorem 23 and equations (6)—(7) yield

<

< <

<

that for the above-mentioned ¢, we have

u({t el (, 50 Lo®)( s [ha(®)]) > )
P A7) =0,
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and then we obtain

n({tel-rrl: sw [6(0.h(0)) — 96, (0))] > ¢})
i T =0 @

By Theorem 23, equation (8) shows that t — ¢(t, h(t))—¢(t, h1(t)) is (1, v)-ergodic
of infinite class.

Now to complete the proof, it is enough to prove that ¢ — ¢o(t, h(t)) is (u, v)-
ergodic of infinite class. Since ¢o is uniformly continuous on the compact set
K = {hi(t): t € R} with respect to the second variable z, we deduce that for
given ¢ > 0, there exists d > 0 such that, for all ¢ € R, & and & € K, one has

160 =&l <6 = [lda(t,&0(F) — da(t, E2(D))]| < e
Therefore, there exist n(¢) € N and {zz}:lz(el) C K, such that
n(e)
K C U Ba(zi,é)

i=1
and then

(e)
[go(t, ()] <&+ D lla(t, z0)].
=1

Since

Vie{l,...,n(e)} lim é/T( sup |¢2(9,zi)|)du(t):0,

T+ V([_TvT]) —7 NO€]—00,t]

we deduce that

Ve>0 limsupﬁ /T (eesup |¢2(9,h1(t))|) du(t) <,

T—+4o00 V —r ]—o0,t]

which implies

i ——— [ ([ 5w 1oa6 ) dutt) =0,

T—++00 V([—T, T]) —T ]—00,t]

Consequently ¢ — ¢2(t, h(t)) is (i, v)-ergodic of infinite class. O
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We have the following result.

Theorem 32. Assume that (Hy) holds. Let u,v € M and $ € PAPR; X, u, v,
00), then the function t — ¢ belongs to PAP(B; X, u, v, 00).

Proof. Assume that ¢ = g + h where g € AP(R;X) and h € E(R; X, p, v, 00).
Then we can see that, ¢ = g¢ + hy and g; is almost periodic. On the other hand,
we have

1 /“( sup Lesup |h(9+5)|})du(t)<

v([-7.7]) J_; 6€]—o0,t] ]—00,0]
1 g
<L / (sw 1nO)]) dutr),
(S

v([=77]) Jor Npe]-so

which shows that ¢; belongs to PAP(B, u,v,00). Thus, we obtain the desired
result. O

5. (u, v)-Pseudo almost periodic solutions of infinite
class

In what follows, we will be looking at the existence of bounded integral solu-
tions of infinite class of equation (1).

Theorem 33. [3] Assume that B satisfies (Az), (Az2), (B), (C1), (C2) and (Hy),
holds. If f € BC(R; X), then there exists a unique bounded solution u of equation
(1) on R, given by

t

Uy = /\El-ir-loo . L{S(t — S) 1I° (B)\ Xo f(S)) ds +
t
+ lim U'(t — s)II*(Bx Xo f(s)) ds for teR,
A—r+oo J 4

where I11° and TI* are the projections of Ba onto the stable and unstable subspaces,
respectively.



34 D. Votsia, I. Zabsonre

Proposition 34. [12]/ Let h € AP(R; X) and ' be the mapping defined for t € R

by
I'h lim Z/{ (t—s)1I (,Ba Xo h(s)) ds +
)\~>+oo
t
+dm [ U (t — 5) TI* (By X h(s)) ds} 0).

Then Th € AP(R, X).

Theorem 35. Let p,v € M satisfy (Hy) and g € E(R; X, u,v,00). Then T'g €
E(R; X, p, v, 00).

Proof. In fact, for 7 > 0 we get

/_:( sup |Fh(9)|ds)dﬂ(t) <

e ]—o0,t]

< TN / sup /9 e O~ 11 lg(s)| ds ) dyr) +

€ ]—o0,t] %)

+oo
LM / sup/e 0= I g(s)] ds ) du(t) <

00,1]
. 6
<M M |11 sup |g(s)|( sup / e (=9 ds) du(t) +
—7 s€]—00,t] 0€]—o0,t] J —c0
. T +oo
+ M M |TT*| sup |g(s)|( sup / ew(0=3) ds)du(t) <
—T s€]—00,—0] fe]—o0,t] JO

_ M M |TI5| 4+ M M |I1%| [T (
D w se

sup[g(s)! ) dp(®).

-7 ]—o0,t]

Consequently

V[—lT, 7] /_T (ae?fgo_t](FgM@))du(t) <

<MM'“S'+MM'H"'(V[1 [ (Csw la@)auo).

w =T, T] —7 N s€]—o00,t]

which converges to zero as 7 — +o00. Thus, we obtain the desired result. O
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For the existence of (u, v)-pseudo almost periodic solution of infinite class, we
make the following assumption.

(He) f:R — X is in cl(p, v)-pseudo almost periodic of infinite class.

Proposition 36. Assume that B satisfies (A1), (Asg), (B), (C1), (Cg) and (Hyp),
(Hy), (Hy) and (Hg) hold. Then equation (1) has a unique cl(u, v)-pseudo almost
periodic solution of infinite class.

Proof. Since f is a (p, v)-pseudo almost periodic function, f has a decomposition
f = fi+ fo, where f; € AP(R; X) and fs € E(R; X, u,v,0). Using Proposition
33, Proposition 34 and Theorem 35, we get the desired result. O

Our next objective is to show the existence of (u,v)-pseudo almost periodic
solutions of infinite class for the following problem

u'(t) = Au(t) + L(u) + f(t,uy)  for t €R, (9)

where f: R x B — X is continuous.
For the sequel, we make the following assumption.

(H7) Let p,v € M and f: R x B — X cl(u,v)-pseudo almost periodic of infinite
class such that there exists a continuous function Ly : R — [0, +00[ such
that

‘f(t,gol) - f(t,gog)‘ < Ly(t)|p1 — 2|8 forall teR and 1,92 € B
and L satisfies inequality (6).

Theorem 37. Assume that B is a uniform fading memory space and (A1), (Ag),
(Cl); (02)7 (H0)7 (HI); (H2)7 (H3)7 (H5) and (H7) hold. If

?

. t +o0o
M M C sup (|HS| / e @) Li(s)ds + |TIY| / =3 [ (s) ds) <
teR —00 t

N =

where C = max { sup [M(t)|, sup|K(t)|}, then equation (9) has a unique cl(p,v)-
teR teR

pseudo almost periodic solution of infinite class.

Proof. Let  be a function in PAP(R; X, i, v, 00), from Theorem 32 the function
t — x; belongs to PAP(B, ui,00). Hence Theorem 31 implies that the function
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g() == f(-,z.) is in PAP(R; X, pt,00). Consider the mapping
H: PAPR; X, u,v,00) - PAP(R; X, i, v, 00)

defined for ¢ € R by

(’Hx)(t):[ lim / L{S(t—s)HS(E)\Xof(s,xs)) ds +

A—+oo [
t

+ lim U (t — s)I1 (B Xo f(5,74)) ds} (0).

A—~+o0o Yoo

From Proposition 33, Proposition 34 and taking into account Theorem 35, it suf-

fices now to show that the operator H has a unique fixed point in PAP(R; X, u, v,

00). Since B is a uniform fading memory space, by the Lemma 9, we can choose

the function K constant and the function M such that M(t) — 0 as ¢ — +oc.

Let C' = max { sup | M (¢)], sup|K )|} and 1,22 € PAP(R; X, 1, v, 00), then we
teR

have
|Hay (t) — Haa(t)] <

g‘ lim /t L{S(t—s)Hs(é)\Xo[f(s,xls)—f(8,$15)])ds‘+

A— 400 — o

+‘ lim /t L{S(t—s)H“(E)\XO [f(s,xgs)—f(s,xgs)})ds‘ <

A— 400 +oo

. t
< NN / =) [ (s) 215 — was|s ds +
[ Ly o — il ds) <

W[ [0 1y6) (K0 s (21O - ()] +

0<€<s

+ M(s) |x1, — x20|3)d8 +

+oo
] [ e Ly(s) (Ks) sup [oa(€) = ()] + M) o, ~ 2| )]
t 0<E<s
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which implies

|Ha1 (t) — Has(t)| <2M M C sup |H9|/ e =) Li(s)ds +
teR

+ |H"|/t e“t=3) L4 (s) ds) |z — 2.

This means that H is a strict contraction. Thus by Banach’s fixed point theorem,
‘H has a unique fixed point v in PAP(R; X, i, v,00). We conclude that equa-
tion (9), has one and only one ¢l(u, v)-pseudo almost periodic solution of infinite
class. g

Proposition 38. Assume that B is a uniform fading memory space and (Aj),
(Ag), (Cy), (Cy), (Hy), (Hy), (Hp), (Hs) and, (Hj5) and f is lipschitz continuous
with respect the second argument. If

w
2 M M C (|II3| + |TI4|)

Lip(f) <

then equation (9) has a unique cl(u,v)-pseudo almost periodic solution of infinite
class, where Lip(f) is the lipschitz constant of f.

Proof. Let us pose k = Lip(f), we have

|Hay (t) — Haa(t)] <

2MMCsup |HS|/ w(t—s kds+|H“|/ ew(t= S)kds) |21 — 2| <
teR
2 kD M C (JI1°| + |11
_ qep ey
w
w

Consequently H is a strict contraction if k < ——= .
2M M C (T3] 4 ]T1¥|)
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6. Application

For illustration, we propose to study the existence of solutions for the following

model
o 82 0
&z(t, x) = @z(t, x) + / G(0) z(t + 0,x) df + (sint + sin(\/it)) +
0
+ arctan(t) +/ h(0,z(t+6,x)) do for teR and z €[0,7] (10)
with conditions
z(t,0) = z(t,m) =0 for t R, (11)
where G :]—00,0] — R is a continuous function and h :]—00,0] x R — R is

continuous and lipschitzian with respect to the second argument. To rewrite
equation (10) in the abstract form, we introduce the space X = Cy([0, 7];R) of
continuous function from [0, 7] to RT equipped with the uniform norm topology.
Let A: D(A) — X be defined by

D(A) ={ye XNC*[0,7],R): y" € X}

Ay=y"
Then A satisfied the Hille-Yosida condition in X. Moreover the part Ay of A in
D(A) is the generator of strongly continuous compact semigroup (Ty(t))¢>0 on
D(A). Tt follows that (Ho) and (H;) are satisfied.

The phase space B = Cy, v > 0 where

Cy = {peC(-00,0;X): lim e p(f) existin X}

60— —o0

with the the following norm

lly = sup [e?” o(6)].
0<

X

This space is a uniform fading memory space, that is (Hz), and it satisfies (Cy),
(C2).



Pseudo almost periodic solutions. .. 39

We define f: Rx C — X and L : C' — X as follows

f(t,)(z) = sint + sin(v/2t) + arctan(t) +

0
+/ h(0,(0)(x)) do for z €[0,7] and t € R,

— 00

L(e)(@) = /O G(0) p(0)(2)d6  for 6€]—00,0] and € [0, 7.
Let us pose v(t) = z(t,x). Then equation (10) takes the following abstract form
V'(t) = Av(t) + L(ve) + f(t,ve)  for t€R. (12)
Consider the measures p and v where its Radon-Nikodym derivative are respec-

tively p1, p2 : R = R defined by

1 for t >0,
pi(t) = {

et for t<0,

and
p2(t) = |t] for t eR,

ie. du(t) = pi(t)dt and dv(t) = pa(t) dt where dt denotes the Lebesgue measure
on R and

M(A):/Apl(t) dt for I/(A):/Apg(t) dt for AeB.

From [6] u, v € M, p, v satisfy Hypothesis (Hs) and Sint—l—sin(\/it)—l—g is almost
periodic.

We have
0 T
el dt +/ dt
: p(=77]) _ .. /_T 0 . l—e ™47
lim sup ———= = lim sup = =limsup ——— =0 < o0,
T—+00 V([_T, T]) T—+00 2/ tdt T—+00 T
0

which implies that (Hs) is satisfied.
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Since for all § € R, _TW < arctanf < g, then we have

! /+T | arctan(0)| du(t) < & x —— ) <
_ sup |arctan w(t) < = X —— w(t) <
V([_Ta T]) —7 0€]—00,0] 2 V([_Tv T]) -7

<fxm—>o as T — 4o00.
2 y(-T,71

It follows that ¢t — arctant is (u,v)-ergodic of infinite class consequently, f is
uniformly (p, v)-pseudo almost periodic of infinite class. Moreover, L is a bounded
linear operator from B to X.

In fact for ¢ € C, we have ¢ € C(]—00,0]; X) and egr_noo e?? ©(0) = xp exist

in X, then there exists M > 0 such that |e??¢(0)| < M for all § €]—00,0]. We
have for x € X

L@ < [ 6O w(O)@)]| db <

—0o0

0 0
< / ‘e(VH)G e 700 @(9)(m)| do < M/ e dh < oo

and

L@ < [ 6O oo db <

o ) .
</ |0 H10 =10 70 (0 ()| dB < (/ e’ d9) |l

which implies that L is well defined and L is a bounded linear operator from B to
X. We suppose that there exists a function k1 (-) € L'(]—o0,0]; R*) such that

|h(6,21) — h(0,x2)| < K(8) |1 — x2 for # <0 and z1,z2 € R, (13)
h(0,0) = 0. (14)

For example, we can take h(f,z) = e~ sin (%) for (#,2) €]—00,0] x R and
k1(0) = ¢=%. We can sec that h(6,0) = 0 and |h(0,21) — h(0,z2)| < & |21 — 2]
Assumptions (13) and (14) imply that f(¢) € X. In fact, ¢ € B, then

F(0) (&) = / W0, (O)(x) do for @€ [0,7]

—0o0
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and

Consequently

Using the dominated convergence theorem, one can show that f(y) is a continuous

function on [0, 7]. Moreover, for every 1, 2 € B, we have

[f(t,01) = f(t,02)| = sup [f(p1)(z) = fp2)(2)] <

Oizgﬂ
< sw [ [h(6.6)w) — h(o. e2(0)(@)| 46 <
o<zt J —0
0
< sup k1(0)|1(0)(2) — @2(0)(x)] df <

o<z J -0

0
<( / k(6)d8)  sup_[pr(6)(x) — @2(6) )]
—00 —OO<9§O
o<z
Consequently, we conclude that f is Lipschitz continuous and cl(u, v)-pseudo al-
most periodic of infinite class. Then by Proposition 38 we deduce the following

result.

Theorem 39. Under the above assumptions, equation (12) has a unique cl(p,v)-
pseudo almost periodic solution v of infinite class.
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