Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 6 | 2051--2067
Tytuł artykułu

Crustal structure and magmatic system of Isla Socorro (Eastern Pacifc Ocean), derived from the interpretation of geological–geophysical data

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Isla Socorro is an oceanic island located in the Eastern Pacific Ocean, at the junction of the Clarion Fracture Zone and Mathematician Ridge, approximately 600 km west of the Mexican coastline. Very little is known about the submarine portion of the island, but based on the oldest subaerial deposits, it is inferred to be primarily a basaltic shield cone. In this study, the subsurface structure of Isla Socorro was analysed based on an integration of geological and geophysical data. The geophysical data consist of high-resolution airborne magnetic data as well as an integration of terrestrial gravity and high-resolution satellite gravity. The study revealed important information about the composition, structure and origin of the volcanic edifice. The analysis and interpretation of the gravity and magnetic data indicate the existence of extensional systems associated to the principal tectonic structures of the Revillagigedo area. The horizontal gradient and Euler deconvolution of magnetic data reveal the presence of curved features interpreted as caldera structures. A central, vertically extensive body low in both density and magnetic susceptibility was identified through the 2D forward and 3D inverse modelling techniques. This body could represent a high-temperature zone above the Curie point, thus, we propose this body as a remnant magma reservoir and the source of the most recent volcanic activity from subaerial Socorro, and indicates that the possibility of a future large volume eruption from the summit cannot be ruled out.
Wydawca

Czasopismo
Rocznik
Strony
2051--2067
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
  • Instituto Potosino de Investigación Científca y Tecnológica (IPICYT), San Luis Potosí, S.L.P., México
autor
  • Universidad de Colima, Colima, México
Bibliografia
  • 1. Abderbi J, Khattach D, Kenafi J (2016) Multiscale analysis of the geophysical lineaments of the High Plateaus (Eastern Marocco): structural implications. J Mater Environ Sci 8(2):467–475
  • 2. Alvarez R, Corbo-Camargo F, Yutsis V (2017) Geophysical modelling of Isla Isabel: a volcanic island on the Mexican continental margin. In: Németh K, Carrasco-Núñez G, Aranda-Gómez JJ, Smith IEM (eds) Monogenetic volcanism, Special Publications, vol 446. Geological Society, London, pp 295–310. https://doi.org/10.1144/SP446.13
  • 3. Araña V, Camacho AG, Garcia A, Montesinos FG, Blanco I, Vieira R, Felpeto A (2000) Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic and volcanological data. J Volcanol Geoth Res 103(1–4):43–64
  • 4. Baker PE (1974) Peralkaline acid volcanic rocks of oceanic islands. Bull Volcanol 38:737–754. https://doi.org/10.1007/BF02596906
  • 5. Batiza R, Vanko D (1985) Petrologic evolution of large failed rifts in the eastern Pacific: petrology of volcanic and plutonic rocks from the Mathematician Ridge area and the Guadelupe Trough. J Petrol 26:564–602
  • 6. Beier C, Haase KM, Hansteen TH (2006) Magma evolution of the Sete Cidades Volcano, São Miguel, Azores. J Petrol 47(7):1375–1411
  • 7. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494–1498. https://doi.org/10.1190/1.1442197
  • 8. Blanco-Montenegro I, De Ritis R, Chiappini M (2007) Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bull Volcanol 69(6):643–659. https://doi.org/10.1007/s00445-006-0100-7
  • 9. Blanco-Montenegro I, Montesinos FG, Arnoso J (2018) Aeromagnetic anomalies reveal the link between magmatism and tectonics during the early formation of the Canary Islands. Sci Rep 8:42. https://doi.org/10.1038/s41598-017-18813-w
  • 10. Blanco-Montenegro I, Montesinos FG, García A, Vieira R, Villalaín JJ (2005) Paleomagnetic determinations on Lanzarote from magnetic and gravity anomalies: implications for the early history of the Canary Islands. J Geophys Res Solid Earth 110:B12. https://doi.org/10.1029/2005JB003668
  • 11. Blanco-Montenegro I, Nicolosi I, Pignatelli A, García A, Chiappini M (2011) New evidence about the structure and growth of ocean island volcanoes from aeromagnetic data: the case of Tenerife, Canary Islands. J Geophys Res 116:B03102. https://doi.org/10.1029/2010JB007646
  • 12. Bohrson WA, Reid MR (1995) Petrogenesis of alkaline basalts from Socorro Island, Mexico: trace element evidence for contamination of ocean island basalt in the shallow ocean crust. J Geophys Res 100:24555–24576
  • 13. Bohrson WA, Reid MR (1997) Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open–system processes: Socorro Island, Mexico. J Petrol 38:1137–1166. https://doi.org/10.1093/petroj/38.9.1137
  • 14. Bohrson WA, Reid MR (1998) Genesis of evolved ocean island magmas by deep- and shallow-level basement recycling, Socorro Island, Mexico: constraints from Th and other isotope signatures. J Petrol 39:995–1008. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.579.7306&rep=rep1&type=pdf
  • 15. Bohrson WA, Reid MR, Grunder AL, Heizler MT, Harrison TM, Lee J (1996) Prolonged history of silicic peralkaline volcanism in the eastern Pacific Ocean. J Geophys Res 101:11457–11474. https://doi.org/10.1029/96JB00329
  • 16. Briole P, Willis P, Dubois J, Charade O (2009) Potential volcanological applications of the DORIS system. A geodetic study of the Socorro Island (Mexico) coordinate time-series. Geophys J Int 178:581–590
  • 17. Bryan WB (1964) Relative abundance of intermediate members of the oceanic basalt-trachyte association: evidence from Clarion and Socorro lslands, Revillagigedo lslands, Mexico. J Geophys Res 69:3047–3049
  • 18. Bryan WB (1966) History and mechanism of eruption of soda-rhyolite and alkali basalt, Socorro Island, Mexico. Bull Volc 29:453–480
  • 19. Bryan WB (1967) Geology and petrology of Clarion lsland, Mexico. Geol Soc Am Bull 78:1461–1476
  • 20. Bryan WB (1970) Alkaline and peralkaline rocks of Socorro Island, Mexico. Carnegie Inst Wash Yearb 68:194–200
  • 21. Bryan WB (1976) A basalt-pantellerite association from Isla Socorro, Islas Revillagigedo, Mexico. In: Aoki H, Iizuka S (eds) Volcanoes and tectonosphere. Tokai University Press, Tokyo, Japan, pp 75–91
  • 22. Carballido-Sanchez EA (1994) The geology and petrology of Socorro Island, Revillagigedo Archipelago, Mexico. PhD Thesis, Tulane University
  • 23. Carmo R, Madeira J, Ferreira T, Queiroz G, Hipólito A (2015) “Volcanotectonic structures of São Miguel Island, Azores,” in Volcanic Geology of São Miguel Island (Azores Archipelago)
  • 24. Chenrai P, Meyers J and Charusiri P 2010. Euler deconvolution technique for gravity survey. J Appl Sci Res, 6 (11): 1891–1897. http://www.eatgru.sc.chula.ac.th
  • 25. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591. https://doi.org/10.1016/j.cageo.2006.02.016
  • 26. DeMets C, Traylen S (2000) Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. Tectonophysics 318:119–159
  • 27. Escanero-Figueroa E (1986) Profundidad media estimada de perfiles espectrales gravimétricos. Tesis Ing. Geofísico, Universidad Nacional Autónoma de México, Facultad de Ingeniería, UNAM. Retrieved from https://repositorio.unam.mx/contenidos/3460855
  • 28. Escorza Reyes M (2010) Magnetometría de la Isla Socorro, Archipiélago de las Revillagigedo. Tesis Ing. Geofísico Universidad Nacional Autónoma de México, Facultad de Ingeniería, UNAM. Retrieved from https://repositorio.unam.mx/contenidos/3437913
  • 29. Farmer JD, Farmer MC, Berger R (1993) Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island Mexico. Radiocarbon 35(2):253–262. https://doi.org/10.1017/S0033822200064924
  • 30. Favela J, Anderson DL (2000) Extensional tectonics and global volcanism. Problems in geophysics for the new millennium. Editrice Compositori, Bologna, Italy, pp 463–498
  • 31. Fedi M, Rapolla A (1999) 3-D inversion of gravity and magnetic data with depth resolution. Geophysics 64:452–460. https://doi.org/10.1190/1.1444550
  • 32. Garcia A, Blanco I, Torta JM, Socias I (1999) High-resolution aeromagnetic survey of the Teide volcano (Canary Islands): a preliminary analysis. Ann Geophys 40:329–359
  • 33. Gill R. (2010) Igneous Rocks and Processes. A Practical Guide. Wiley-Blackwell. A John Wiley & Sons, Ltd., Publication. ISBN 978-1-4443-3065-6. 428 pp. www.wiley.com/go/gill/igneous
  • 34. Grauch VJS, Hudson MN, Minor SA (2001) Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico. Geophysics 66:707–720. https://doi.org/10.1190/1.1444961
  • 35. Hildenbrand TG, Rosenbaum JG, Kauahikaua JP (1993) Aeromagnetic study of the Island of Hawaii. J Geophys Res 98:4099–4119. https://doi.org/10.1029/92JB02483
  • 36. Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultra-high-resolution picture of Earth’s gravity field. Geophysical Research Letter. https://doi.org/10.1002/grl.50838
  • 37. Kueppers U, Pimentel A, Ellis B, Forni F, Neukampf J, Pacheco J, Perugini D, Queiroz G (2019) Biased volcanic hazard assessment due to incomplete eruption records on Ocean Islands: an example of Sete Cidades Volcano. Azores Front Earth Sci 7:122
  • 38. Lewerissa R, Sismanto S, Setiawan A, Pramumijoyo S (2020) The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources. Turkish J Earth Sci 29:596–616. https://doi.org/10.3906/yer-1908-17
  • 39. Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volc 38:498–505
  • 40. Magee C, Stevenson CTE, Ebmeier SK, Keir D, Hammond JOS, Gottsmann JH, Whaler KA, Schofield N, Jackson CA-L, Petronis MS, O’Driscoll B, Morgan J, Cruden A, Vollgger SA, Dering G, Micklethwaite S and Jackson MD (2018) Magma plumbing systems: a geophysical perspective. J Petrol, 59(6): 1217–1251. https://academic.oup.com/petrology/advancearticle/doi/https://doi.org/10.1093/petrology/egy064/5043305
  • 41. Mahood GA (1984) Pyroclastic rocks and calderas associated with strongly peralkaline magmatism. J Geophys Res 89:8540–8552. https://doi.org/10.1029/JB089iB10p08540
  • 42. Mammerickx J, Klitgord KD (1982) East Pacific rise: evolution from 25 m.y.B.P. to the present. J Geophys Res 87:6751–6758
  • 43. Mammerickx J, Naar DF, Tyce RL (1988) The mathematician paleoplate. J Geophys Res 93(B4):3025–3040
  • 44. McVey BG, Hooft EEE, Heath BA, Toomey DR, Paulatto M, Morgan JV, Nomikou P, Papazachos CB (2019) Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology 48(3):231–235. https://doi.org/10.1130/G47127.1
  • 45. Milsom J, Eriksen A (2011) Field geophysics, 4th edn. UK, Wiley-Blackwell
  • 46. Mungall JE, Martin RF (1995) Petrogenesis of basalt-comendite and basalt-pantellerite suites, Terceira, Azores, and some implications for the origin of ocean-island rhyolites. Contr Mineral Petrol. 119:43–55. https://link.springer.com/article/10.1007%2FBF00310716
  • 47. Mussett AE, Khan MA, Button S (2000) Looking into the Earth: an introduction to geological geophysics. Cambridge University Press, Cambridge
  • 48. Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517. https://doi.org/10.1190/1.1440276
  • 49. Nabighian MN (1974) Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics 39(1):85–92. https://doi.org/10.1190/1.1440416
  • 50. Napoli R, Currenti G (2016) Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures. J Volcanol Geoth Res 320:40–49. https://doi.org/10.1016/j.jvolgeores.2016.04.011
  • 51. Napoli R, Currenti G, Del Negro C (2007) Internal structure of Ustica volcanic complex (Italy) based on a 3D inversion of magnetic data. Bull 69(8):869–879. https://doi.org/10.1007/s00445-007-0115-8
  • 52. Pal PC, Khurana KK, Unikrishman P (1979) Two examples of spectral approach to source depth estimation in gravity and magnetics. Pure Appl Geophys 117:772–783
  • 53. Paoletti V, Gruber S, Varley N, D’Antonio M, Supper R, Motschka K (2015) Insights into the structure and surface geology of Isla Socorro, Mexico, from airborne magnetic and gamma-ray surveys. Surv Geophys 37:601–623
  • 54. Paulatto M, Moorkamp M, Hautmann S, Hooft E, Morgan JV, Sparks RSJ (2019) Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data. Journal of Geophysical Research: Solid Earth 124(11):11170–11191
  • 55. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011JB008916
  • 56. Pavón-Moreno JA (2009) Exploración Gravimétrica en Isla Socorro, Archipiélago de Revillagigedo, México. Tesis Ingeniería Geofísica, Facultad de Ingeniería, UNAM, 65 pp. https://repositorio.unam.mx/contenidos/3540976
  • 57. Pilkington M, Keating P (2004) Contact mapping from gridded magnetic data—A comparison of techniques. Explor Geophys 35:306–311. https://doi.org/10.1071/EG04306
  • 58. Phillips JD (1997) Potential-Field Geophysical Software for the PC, version 2.2: USGS open-File Report 97–725
  • 59. Reeves, C. (2005) Aeromagnetic Surveys: Principles, Practice and Interpretation. Earth- works, Washington DC, 155 p.
  • 60. Reid AB and Thurston JB (2014) The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics, Vol. 79, No. 4 (July-August 2014); P. J61–J66, 3 Figs., 1 Table. DOI: https://doi.org/10.1190/GEO2013-0235.1
  • 61. Reid AB, FitzGerald DJ, Mcinerny Ph (2003) Euler deconvolution of gravity data. SEG. https://doi.org/10.13140/2.1.3210.0489
  • 62. Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91
  • 63. Reynolds JM (1997) An introduction to applied and environmental geophysics: John Wiley and Sons. Reynolds Geo-Sciences Ltd, United Kingdom
  • 64. Richards AF (1959) Geology of the Islas Revillagigedo, Mexico, 1, Birth and development of Volcan Barcena, lsla San Benedicto. Bull. Volcanologique, serie 2, v. 22: 73–123
  • 65. Richards AF (1964) Geology of the Islas Revillagigedo, Mexico, 4, geology and petrography of lsla Roca Partida. Bull Geol Soc Am 70:1157–1163
  • 66. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. https://doi.org/10.1029/2008GC002332
  • 67. Saibi H, Azizi M, Saad Mogren S (2016) Structural investigations of afghanistan deduced from remote sensing and potential field data. Acta Geophys 64(4):978–1003. https://doi.org/10.1515/acgeo-2016-0046
  • 68. Sbarbori E, Tauxe L, Goguitchaichvili A, Urrutia-Fucugauchi J, Bohrson WA (2009) Paleomagnetic behavior of volcanic rocks from Isla Socorro. Mexico Earth Planets Space 61:191–204
  • 69. Siebe C, Komorowski JC, Navarro C, McHone J, Delgado H, Cortes A (1995) Submarine eruption near Socorro Island, Mexico: geochemistry and scanning electron microscopy studies of floating scoria and reticulite. J Volcanol Geoth Res 68:239–271
  • 70. Sinem Ince E, Abrykosov O, Förste Ch, Flechtner F (2020) Forward gravity modelling to augment high-resolution combined gravity field models. Surv Geophys 41:767–804. https://doi.org/10.1007/s10712-020-09590-9
  • 71. Spector A, Grant F (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302
  • 72. Taran YA, Fischer TP, Cienfuegos E, Morales P (2002) Geochemistry of hydrothermal fluids from an intraplate ocean island: Evermann volcano, Socorro Island, Mexico. Chem Geol 188:51–63
  • 73. Taran YA, Varley NR, Inguaggiato S, Cienfuegos E (2010) Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids 10:542–555
  • 74. Tedla GE, van der Meijde M, Nyblade AA, van der Meer FD (2011) A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution. Geophys J Int 187:1–9. https://doi.org/10.1111/j.1365-246X.2011.05140.x
  • 75. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge Univ. Press, Cambridge
  • 76. Thompson DT (1982) EULDPH: a new technique for making computer assisted depth estimates from magnetic data. Geophysics 47(1):31–37. https://doi.org/10.1190/1.1441278
  • 77. Yutsis VV, Varley N, Guzmán Macías RA, Martin AJ (2017) Gravity and magnetic study in Isla Socorro (Revillagigedo archipelago), Mexico. In: Machte B, Holzhayer I, Ifrin C, Stinnegeck W, Glasmacher U (eds) 24th Colloquium on Latin American earth sciences. CAEA heidelbergensis 20
  • 78. Verduzco B, Fairhead JD, Green CM (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23(2):116–119. https://doi.org/10.1190/1.1651454
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-678db5bd-6bb6-4759-ab7d-d2d2c3e34d5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.