Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, Fasc. 1 | 61--75
Tytuł artykułu

Extremes of order statistics of stationary Gaussian processes

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ n, be mutually independent and identically distributed centered stationary Gaussian processes. Under some mild assumptions on the covariance function, we derive an asymptotic expansion of P [formula] ]X(r) (t) ≤ u) as u → ∞, where mr(u) = (P([formula] X(r) (t) > u))−1 (1 + o(1)), and {X(r) (t), t ≥ 0} is the rth order statistic process of {Xi(t), t ≥ 0}, 1 ≤ i, r ≤ n. As an application of the derived result, we analyze the asymptotics of supremum of the order statistic process of stationary Gaussian processes over random intervals.
Wydawca

Rocznik
Strony
61--75
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Department of Statistics, School of Mathematics, Southwest Jiaotong University, Xi’an Road 999, Xipu, Pixian, Chengdu, Sichuan 611756, PR of China, cmzhao@swjtu.cn
Bibliografia
  • [1] J. M. P. Albin and H. Choi, A new proof of an old result by Pickands, Electron. Commun. Probab. 15 (2010), pp. 339-345.
  • [2] M. T. Alodat, An approximation to cluster size distribution of two Gaussian random fields conjunction with application to FMRI data, J. Statist. Plann. Inference 141 (2011), pp. 2331-2347.
  • [3] M. T. Alodat, M. Al-Rawwash, and M. A. Jebrini, Duration distribution of the conjunction of two independent F processes, J. Appl. Probab. 47 (2010), pp. 179-190.
  • [4] M. Arendarczyk and K. Dębicki, Exact asymptotics of supremum of a stationary Gaussian process over a random interval, Statist. Probab. Lett. 82 (2012), pp. 645-652.
  • [5] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1989.
  • [6] D. Cheng and Y. Xiao, Excursion probability of Gaussian random fields on sphere, Bernoulli 22 (2016), pp. 1113-1130.
  • [7] K. Dębicki, E. Hashorva, L. Ji, and C. Ling, On Berman’s inequality for order statistics of Gaussian arrays, submitted.
  • [8] K. Dębicki, E. Hashorva, L. Ji, and K. Tabiś, On the probability of conjunctions of stationary Gaussian processes, Statist. Probab. Lett. 88 (2014), pp. 141-148.
  • [9] K. Dębicki, E. Hashorva, L. Ji, and K. Tabiś, Extremes of vector-valued Gaussian processes: Exact asymptotics, Stochastic Process. Appl. 125 (2015), pp. 4039-4065.
  • [10] J. Galambos, Bonferroni inequalities, Ann. Probab. (1977), pp. 577-581.
  • [11] M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York 1983.
  • [12] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., Vol. 148, American Mathematical Society, Providence 1996.
  • [13] Z. Tan and E. Hashorva, Limit theorems for extremes of strongly dependent cyclo-stationary χ-processes, Extremes 16 (2) (2013), pp. 241-254.
  • [14] K. J. Worsley and K. J. Friston, A test for a conjunction, Statist. Probab. Lett. 47 (2000), pp. 135-140.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-677d7d4f-0f36-4379-b168-3cf54701dd3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.