Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 27, No. 3 | 268--274
Tytuł artykułu

Passive synthesis rules of coupled-cavity quantum cascade lasers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new approach to passive electromagnetic modelling of coupled–cavity quantum cascade lasers is presented in this paper. One of challenges in the rigorous analysis of such eigenvalue problem is its large size as compared to wavelength and a high quality factor, which prompts for substantial computational efforts. For those reasons, it is proposed in this paper to consider such a coupled-cavity Fabry-Perot resonant structure with partially transparent mirrors as a two-port network, which can be considered as a deterministic problem. Thanks to such a novel approach, passive analysis of an electrically long laser can be split into a cascade of relatively short sections having low quality factor, thus, substantially speeding up rigorous electromagnetic analysis of the whole quantum cascade laser. The proposed method allows to determine unequivocally resonant frequencies of the structure and the corresponding spectrum of a threshold gain. Eventually, the proposed method is used to elaborate basic synthesis rules of coupled–cavity quantum cascade lasers.
Wydawca

Rocznik
Strony
268--274
Opis fizyczny
Bibliogr. 22 poz., wykr., rys., tab.
Twórcy
autor
  • Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland, mkrysicki@ire.pw.edu.pl
autor
  • Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
autor
  • Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] L.A. Coldren, K.J. Ebeling, J.A. Rentschler, C.A. Burrus, D.P. Wilt, Continuous operation of monolithic dynamic-single-mode coupled-cavity lasers, Appl. Phys. Lett. 44 (1984) 368–370, http://dx.doi.org/10.1063/1.94771.
  • [2] N. Roxhed, P. Griss, G. Stemme, Tapered deep reactive ion etching: methodand characterization, TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference (2007) 493–496, http://dx.doi.org/10.1109/SENSOR.2007.4300175.
  • [3] S.- Kim, T. Yamashita, K.- Lee, M. Nagao, M. Sato, H. Maeda, Development of3-D focused-ion-beam (FIB) etching methods for nano- and micro-technologyapplication, Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat.No.01EX468) (2001) 34–35, http://dx.doi.org/10.1109/IMNC.2001.984055.
  • [4] H. Ibrahim, M. Ahmed, F. Koyama, Large signal modultion analysis ofhigh-speed transverse coupled cavity VCSELs, 2017 Conference on Lasers and Electro-Optics (CLEO) (2017) 1–2, http://dx.doi.org/10.1109/CLEOPR.2017.8119069.
  • [5] S. Arafin, G. Morrison, M. Mashanovitch, L.A. Johansson, L.A. Coldren, Coupled-cavity lasers for a low-power integrated coherent optical receiver, 2017 Conference on Lasers and Electro-Optics (CLEO) (2017) 1–2.
  • [6] P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, A. Forchel, Widely tunable quantum cascade lasers with coupled cavities for gas detection, Appl. Phys. Lett. 97 (2010), 181111, http://dx.doi.org/10.1063/1.3514247.
  • [7] M. Bugajski, K. Kosiel, A. Szerling, J. Kubacka-Traczyk, I. Sankowska, P. Karbownik, A. Trajnerowicz, E. Pruszyńska-Karbownik, K. Pierściński, D.Pierścińska, GaAs/AlGaAs (∼ 9.4 m) quantum cascade lasers operating at 260 K, Bull. Polish Acad. Sci. Tech. Sci. 58 (2010) 471–476, http://dx.doi.org/10.2478/v10175-010-0045-z.
  • [8] B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, High-power terahertzquantum-cascade lasers, Electron. Lett. 42 (2006) 89–91, http://dx.doi.org/10.1049/el:20063921.
  • [9] L. Coldren, S. Corzine, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd Edition, Wiley.Com. (n.d.). https://www.wiley.com/en-us/Diode+Lasers+and+Photonic+Integrated+Circuits%2C+2nd+Edition-p-9780470484128 (Accessed 13 September 2018).
  • [10] P. Kopyt, B. Salski, M. Sakowicz, Efficient three-dimensional electromagnetic modeling of metal–metal waveguides employed for quantum cascade lasersoperating in the THz band, J. Lightwave Technol. 36 (2018) 1721–1729, http://dx.doi.org/10.1109/JLT.2018.2789584.
  • [11] C. Katsidis, D.I. Siapkas, General transfer-matrix method for optical multilayersystems with coherent, partially coherent, and incoherent interference, Appl. Opt. 41 (2002) 3978–3987, http://dx.doi.org/10.1364/AO.41.003978.
  • [12] K.J. Ebeling, L.A. Coldren, Analysis of multielement semiconductor lasers, J.Appl. Phys. 54 (1983) 2962–2969, http://dx.doi.org/10.1063/1.332498.
  • [13] L. Coldren, T. Koch, Analysis and design of coupled-cavity lasers - Part I: threshold gain analysis and design guidelines, IEEE J. Quantum Electron. 20(1984) 659–670, http://dx.doi.org/10.1109/JQE.1984.1072438.
  • [14] C.A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, 2005.
  • [15] A. Taflove, S.C. Hagness, Computational Electrodynamics: the Finite-differenceTime-domain Method, 3rd ed, Artech House, Boston, MA, 2005.
  • [16] W. Gwarek, M. Celuch, A. Więckowski, M. Sypniewski, Quickwave UserManuals, 1997–2017, (n.d.). http://www.qwed.eu.
  • [17] A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materialsby time-domain techniques, IEEE Trans. Instrum. Meas. 19 (1970) 377–382, http://dx.doi.org/10.1109/TIM.1970.4313932.
  • [18] W.B. Weir, Automatic measurement of complex dielectric constant andpermeability at microwave frequencies, Proc. IEEE 62 (1974) 33–36, http://dx.doi.org/10.1109/PROC.1974.9382.
  • [19] H. Li, J.M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L.H. Li, E.H. Linfield, A.G.Davies, S. Barbieri, Coupled-cavity terahertz quantum cascade lasers for singlemode operation, Appl. Phys. Lett. 104 (2014), 241102, http://dx.doi.org/10.1063/1.4884056.
  • [20] G.L. Matthaei, B. Schiffman, E. Cristal, L. Robinson, Microwave Filters and Coupling Structures, Stanford Research Inst, Menlo Park CA, 1963.
  • [21] R. Sachs, H. Roskos, Mode calculations for a terahertz quantum cascade laser, Opt. Express 12 (2004) 2062–2069.
  • [22] S. Kohen, B.S. Williams, Q. Hu, Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators, J. Appl. Phys. 97 (2005), 053106.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
This work was partially supported by the Polish National Science Center within the SONATA project titled “Full-wave electro-magnetic modelling of coherent radiation in electrically-pumpedmetal-clad semiconductor lasers with a folded cavity” (UMO-2014/15/D/ST7/05221).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-675a4d8e-4acc-47c7-8946-dcdf673d464d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.