Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 54 | 3--43
Tytuł artykułu

Borel sets without perfectly many overlapping translations

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the existence of Borel sets B ⊆ ω2 admitting a sequence ηα : α<λ of distinct elements of ω2 such that (ηα +B)∩(ηβ +B) ≥ 6 for all α, β < λ but with no perfect set of such η’s. Our result implies that under the Martin Axiom, if ℵα < c, α<ω1 and 3 ≤ ι<ω, then there exists a Σ0 2 set B ⊆ ω2 which has ℵα many pairwise 2ι–nondisjoint translations but not a perfect set of such translations. Our arguments closely follow Shelah [7, Section 1].
Wydawca

Rocznik
Tom
Strony
3--43
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
  • Institute of Mathematics The Hebrew University of Jerusalem 91904 Jerusalem, Israel, shelah@math.huji.ac.il
  • Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA, http://shelah.logic.at
Bibliografia
  • [1] M. Balcerzak, A. Rosłanowski, and S. Shelah, Ideals without ccc, Journal of Symbolic Logic 63 (1998), 128–147, arxiv:math/9610219.
  • [2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A.K. Peters, Wellesley, Massachusetts, 1995.
  • [3] M. Elekes and T. Keleti, Decomposing the real line into Borel sets closed under addition, MLQ Math. Log. Q. 61 (2015), 466–473.
  • [4] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, the third millennium edition, revised and expanded.
  • [5] A. Roslanowski and V.V. Rykov, Not so many non-disjoint translations, Proceedings of the American Mathematical Society, Series B 5 (2018), 73–84, arxiv:1711.04058.
  • [6] A. Roslanowski, and S. Shelah, Borel sets without perfectly many overlapping translations II. In preparation.
  • [7] S. Shelah, Borel sets with large squares, Fundamenta Mathematicae 159 (1999), 1–50, arxiv:math/9802134.
  • [8] P. Zakrzewski, On Borel sets belonging to every invariant ccc σ–ideal on 2N, Proc. Amer. Math. Soc. 141 (2013), 1055–1065.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-674d9ef7-c52c-4af2-81d3-41156f26b692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.