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Andrzej ROSLANOWSKI and Saharon SHELAH

BOREL SETS WITHOUT PERFECTLY MANY
OVERLAPPING TRANSLATIONS

A bstract We study the existence of Borel sets B C “2
admitting a sequence (1, : & < A) of distinct elements of “2 such
that | (1 +B) N (ns+ B)| > 6 for all a, B < A but with no perfect
set of such n’s. Our result implies that under the Martin Axiom,
if Ny < ¢, @ < w; and 3 < ¢ < w, then there exists a £9 set
B C “2 which has X, many pairwise 2:—nondisjoint translations
but not a perfect set of such translations. Our arguments closely
follow Shelah [7, Section 1].

1. Introduction

Shelah [7] analyzed the question whether there are Borel sets in the plane
which contain large squares but no perfect squares. A rank on models with
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a countable vocabulary was introduced and was used to define a cardinal
Aw; (the first A such that there is no model with universe A, countable
vocabulary and rank < wi). It was shown in [7, Claim 1.12] that every
Borel set B C “2 x “2 which contains a \,, —square must contain a perfect
square. On the other hand, by [7, Theorem 1.13], if u = p®0 < A, then
some ccc forcing notion forces that (the continuum is arbitrarily large and)
some Borel set contains a p—square but no p*-square.

We would like to understand what the results mentioned above mean for
general relations. Natural first step is to ask about Borel sets with p > Ny
pairwise disjoint translations but without any perfect set of such transla-
tions, as motivated e.g. by Balcerzak, Rostanowski and Shelah [1] (were we
studied the o—ideal of subsets of “2 generated by Borel sets with a perfect
set of pairwise disjoint translations) or Elekes and Keleti [3] (see Question
4.5 there). A generalization of this direction could follow Zakrzewski [§]
who introduced perfectly k—small sets.

However, preliminary analysis of the problem revealed that another,
somewhat orthogonal to the one described above, direction is more natural
in the setting of [7]. Thus we investigate Borel sets with many, but not too
many, pairwise overlapping intersections.

Easily, every uncountable Borel subset B of “2 has a perfect set of
pairwise non-disjoint translations (just consider a perfect set P C B and
note that for x,y € P we have 0,2 +y € (B+2)N(B+y)). The problem of
many non-disjoint translations becomes more interesting if we demand that
the intersections have more elements. Note that in “2, if x + by = y + b1
then also x +b; = y+ by, so x #y and |(B+z)N(B+y)| <w imply that
|(B+z)N (B +y)| is even.

In the present paper we study the case when the intersections (B +x)N
(B + y) have at least 6 elements. We show that for A < \,, there is a ccc
forcing notion P adding a X9 subset B of the Cantor space “2 such that

e for some H C “2 of size A, [(B+h)N(B+h')| > 6 for all h,h' € H,
but

e for every perfect set P C “2 there are x, 2’ € P with [(B+z) N (B +
z')| < 6.

We fully utilize the algebraic properties of (“2,+), in particular the fact
that all elements of “2 are self-inverse.
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In Section 2 of the paper we recall the rank from [7]. We give the relevant
definitions, state and prove all the properties needed for our results later.
In the third section we analyze when a 2 subset of “2 has a perfect set of
pairwise overlapping translations. The main consistency result concerning
adding a Borel set with no perfect set of overlapping translations is given
in the fourth section.

Notation.: Our notation is rather standard and compatible with that of
classical textbooks (like Jech [4] or Bartoszynski and Judah [2]). However,
in forcing we keep the older convention that a stronger condition is the
larger one.

1. For a set u we let
u? = {(z,y) euxu:zH#y}

2. The Cantor space “2 of all infinite sequences with values 0 and 1 is
equipped with the natural product topology and the group operation
of coordinate-wise addition + modulo 2.

3. Ordinal numbers will be denoted be the lower case initial letters of
the Greek alphabet «, 3,7,0d,¢,( as well as . Finite ordinals (non-
negative integers) will be denoted by letters a, b, ¢, d, i, j, k, €, m,n, M
and ¢.

4. The Greek letters k, A will stand for uncountable cardinals.

5. For a forcing notion P, all P-names for objects in the extension via P
will be denoted with a tilde below (e.g., 7, X ), and Gp will stand for
the canonical P-name for the generic filter in P.

2. The rank

We will remind some basic facts from [7, Section 1] concerning a rank (on
models with countable vocabulary) which will be used in the construction
of a forcing notion in the fourth section. For the convenience of the reader
we provide proofs for most of the claims, even though they were given in
7). Our rank rk is the rk® of [7] and rk* is the rk? there.
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Let A be a cardinal and M be a model with the universe A and a count-
able vocabulary 7.

Definition 2.1. 1. By induction on ordinals ¢, for finite non-empty
sets w C A we define when rk(w, M) > §. Let w = {ag,...,an} C A,
|lw| =n+ 1.

(a) rk(w) > 0if and only if for every quantifier free formula ¢ € £(7)
and each k < n, if M | ¢lag, ..., qk, ..., a,] then the set

{ae A M ):<p[a0,...,ak,1,a,ak+1,...,an]}

is uncountable;

(b) if 0 is limit, then rk(w,M) > § if and only if rk(w, M) > ~ for
all v < d;

(c) tk(w,M) > 6 + 1 if and only if for every quantifier free formula
¢ € L(1) and each k < n, if M | ¢[ag,...,0k,...,qp] then
there is o € A\ w such that

rk(wU{a*},M) > § and M = plag, ..., ap—1, 0", A1, - .-, Q).

2. Similarly, for finite non-empty sets w C \ we define when rk*(w, M) >
9 (by induction on ordinals J). Let w = {ag,...,an} C A. We take
clauses (a) and (b) above and

(¢)* rk*(w,M) > §+ 1 if and only if for every quantifier free formula
¢ € L(1) and each k < n, if M | ¢[ag,...,0k,...,ap] then
there are pairwise distinct (af : ¢ <wi1) € A\ (w\ {ax}) such
that o = oy, and for all ¢ < ¢ < wy we have

K (w\, {ax} U {al, af}, M) > 8
and M plag, ..., ag—1, 0 Qi1 .o apl.

By a straightforward induction on « one easily shows the following
observation.

Observation 2.2. If ) # v C w then
o rk(w,M) > § >~ implies rk(v,M) > ~, and

o rk*(w,M) > § >~ implies rk* (v, M) > ~.
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Hence we may define the rank functions on finite non-empty subsets
of A.

Definition 2.3. The ranks rk(w,M) and rk*(w,M) of a finite non-
empty set w C A are defined as:

o rk(w,M) = —1 if =(rk(w, M) > 0), and
rk* (w, M) = —1 if =(rk*(w, M) > 0),

o rk(w,M) = oo if rk(w,M) > § for all ordinals §, and
rk* (w, M) = oo if rk*(w, M) > § for all ordinals §,

e for an ordinal ¢: rk(w,M) = ¢ if rk(w,M) > ¢ but —(rk(w, M) >
d+1),
and rk*(w, M) = § if rk*(w, M) > ¢ but —(rk*(w,M) > § + 1).

Definition 2.4. 1. For an ordinal € and a cardinal A let NPr.()\)
be the following statement: “there is a model M* with the universe
A and a countable vocabulary 7* such that sup{rk(w,M*) : ) £ w €
A<“} <e?

2. The statement NPrZ(\) is defined similarly but using the rank rk*.

3. Pr.(A\) and Pr(\) are the negations of NPr.(\) and NPrZ(\), respec-
tively.

Observation 2.5. 1. If a model Mt (on \) is an expansion' of the
model M, then rk*(w,M™) < rk(w, M™) < rk(w, M).

2. If X is uncountable and NPr.()\), then there is a model M* with the
universe A and a countable vocabulary 7 such that

o rk({a},M*) >0 for all « € X and
o rk(w,M*) < e for every finite non-empty set w C \.

Proposition 2.6 (See [7, Claim 1.7]). 1. NPrj(w).
2. If NPr.()), then NProyq(AT).

3. If NPr.(u) for p < A and cf(\) = w, then NPr.y1 ().

1 So M* is a model with a countable vocabulary 7* D 7, with the universe X, and the
interpretation of symbols from 7 in M7 is the same as in M.
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4. NPr.(\) implies NPri(\).

Proof. (1) Let @ be a binary relational symbol and let M[; be a model
with the universe wy, the vocabulary 7(M;) = {Q} and such that Q"' =
{(a, ) € wi X w1 : @ < B}. Then for each ap < a1 < w; we have
M; | Q[ao, a1] but the set {a < wy : My = Qoy, ]} is countable. Hence
rk(w,M;) = —1 whenever |w| > 2 and rk({a},M;) =0 for a € w;. Conse-
quently, M; witnesses NPrj(wy).

(2) Assume NPr.(A) holds true as witnessed by a model M with the
universe A and a countable vocabulary 7. We may assume that 7 =
{R; : i < w}, where each R; is a relational symbol of arity n(i). Let
S be a new binary relational symbol, T" be a new unary relational sym-
bol, and @Q; be a new (n(i) + 1)—ary relational symbol (for i < w). Let
A {R;, Qi : i <w}U{S,T}.

For each v € [A\,A\T) fix a bijection f, : v 7L\, We define a model
MT:

e the vocabulary of MT is 7 and the universe of M* is AT,

[ J Ri\/ﬂ+ e RiMI g )\n(i),

¢ QI ={(a0, a1, () T A < apy <A & (V8 < i) e <
an(z)) & (foén(i) <a0)7 R fan(i) (an(i)—l)) € Rlzw}7

o SMT = {(ag,0n1) € AT X AT : g < ag} and TV = [\ AT).

Claim 2.6.1. (i) If A<~y <A", 0 #w C~, thenrk(wU{y}, M) <
rk(fy[w],M) and thus rk(w U {v},MT) <e.

(i) If 0 # w C A, then rk(w, M™T) < rk(w,M) and thus rk(w,MT) < ¢.
(iii) If X <y < A*, then rk({y},M™") <e.

Proof of the Claim. (i) By induction on o we show that o <
rk(w U {7}, M) implies a < rk(f,[w],M) (for all sets w C v with fixed
v € [\ AT)).

(x)o Assume rk(w U {y},M*) > 0, w = {ag,...,an} and k < n. Let
o(zo, ..., xy,) be a quantifier free formula in the vocabulary 7 such that

M plfy(ao) s fylar)s- . fran)].
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Let ¢*(xo,...,Zn, Tn+1) be a quantifier free formula in the vocabulary 7
obtained from ¢ by replacing each R;(yo, - - - , Yn(i)—1) (Where {yo, . - - ;Yn@i)—1}
C {xo,...,2n}) With Qi(yo,- -, Yn(i)—1, Tn+1) and let T be

O (2o ..y Ty Tng1) A S(T0, Tng1) Ao AS(Tpy Tng1).

Then Mt = ¢T|ag,...,ak,...,an,7]. By our assumption on w U {v} we
know that the set

A={B< AT M E=otag,..., 001,08, ks, .., n,7]}

is uncountable. Clearly A C v (note S(zg,Tp41) in 1) and thus the set
f+[A] is an uncountable subset of A. For each § € A we have

M = olfy (@), -5 f(8), -+, Fy ()],

so now we may conclude that rk(f,[w],M) > 0.
(x)1  Assume rk(w U {y},M") > a+ 1. Let ¢(xq,...,z,) be a quantifier

free formula in the vocabulary 7, k < n and w = {ao, ..., a,}, and suppose
that M = ¢[fy (), ..., fy(ag), ..., fy(ay)]. Let ¢* and ¢ be defined ex-
actly as in (*)g. Then Mt = ¢t [ag, ...,k ..., an,7]. By our assumption

there is 8* € AT\ (w U {~}) such that M* = p*[ag, ..., 5% ..., a,,7] and
rk(wU{vy, 8*},MT) > a. Necessarily 3* < v, and by the inductive hypothe-
sis tk(fy [w U {B*}],M) > a. Clearly M = ¢o[fy (), -, fv(5%), ..., fy(an)]
and we may conclude rk(f,[w], M) > o + 1.

(x)o If o is limit and rk(wU{y},M™) > « then, by the inductive hypoth-
esis, for each 8 < a we have 8 < rk(w U {7},M") < rk(f,[w],M). Hence
o < k(] M),

(ii) Induction similar to part (i). For a quantifier free formula p(zo, . .., xy)
in the vocabulary 7, let ¢* be the formula ¢(xo,...,z,) A =T (xg) A...A
=T(x,) (so ¢* is a quantifier free formula in the vocabulary 71). If ¢
witnesses that —(rk(w, M) > 0), then p* witnesses —(rk(w,M™) > 0), and
similarly with o + 1 in place of 0.

*

(iii) Suppose towards contradiction that e + 1 < rk({y},M™). Since
M* & T[y], we may find v/ # ~ such that rk({v,~7'},M*) > ¢ and
Mt &= T[+]. Let {v,7'} = {70,71} where 79 < 71. It follows from part (i)
that rk({~0,71},M") < €, a contradiction. O
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It follows from Claim 2.6.1 (and Observation 2.2) that rk(w,M") < e
for every non-empty set w C AT. Consequently, the model M™ witnesses
NPro1(AT).

(3) Let (un : n < w) be an increasing sequence cofinal in A. For each n
fix a model M, with a countable vocabulary 7(M,,) consisting of relational
symbols only and with the universe p, and such that rk(w,M,,) < e for
nonempty finite w C p,. We also assume that 7(M,,) N 7(M,,) = 0 for
n <m < w. Let P, (for n < w) be new unary relational symbols and let
T=U{TM,,) : n <w} U{P, : n < w}. Consider a model M in vocabulary
7 with the universe A and such that

o PM =y, for n < w, and
e for each n < w and S € 7(M,,) we have S¥ = SMn.

Claim 2.6.2. If w is a finite non-empty subset of pn, n < w, then
rk(w, M) < rk(w,M,,) < e.

Proof of the Claim. Similar to the proofs in Claim 2.6.1. O

(4) Follows from Observation 2.5(1).

Proposition 2.7. (See [7, Conclusion 1.8].) Assume f < o < w1, M
18 a model with a countable vocabulary T and the universe p, m,n < w,
n>0,ACuand|Al > 3,.o. Then there is w C A with |lw| = n and
tk*(w, M) > w-B+m 2.

Proof. Induction on o < wy.

STEP o =1 (AND 5 =0): Let M, u,n,m be as in the assumptions, A C p
and |A| > 3,,. Using the Erdés—Rado theorem we may choose a sequence
(0 1 € < we) of distinct elements of A such that:

(a) the quantifier free type of (a.,...,a,,,,) in M is constant for g9 <
coo < Eman < wa, and

(b) for each k < m + n the value of min{w,rk™({aey,..., 0, ., .}, M)}
is constant for eg < ... < gman_k < wa.

2 « .7 gtands for the ordinal multiplication.
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Let ¢ =wi-({+1) (for £ =—1,0,...,m+n). Suppose ¢(xg,...,Tmin) €
L(7) is a quantifier free formula, k¥ < m + n and

M ): ¢[aco,...,ack,...,a<m+n].

It follows from the property stated in (a) above that for every e in the
(uncountable) interval (;—1,(x) we have

M = SD[QCO7"'7&<k—1’a57a<k+17"'7a<m+n]'

Consequently, rk*({ago, g, +n},l\/JI) > 0, and the homogeneity stated
in (b) implies that for every nonempty set w C wo with at most m +mn + 1
elements we have rk*({a. : € € w},M) > 0. Now, by induction on k < m+n
we will argue that

() for every nonempty set w C wy with at most m + n + 1 — k elements
we have rk*({a. : € € w}, M) > k.

We have already justified (x)p. For the inductive step assume (*); and
k< m+mn. Let {(, = w; - (¢ + 1) and suppose that ¢(zo,...,Tmin—t—1)
is a quantifier free formula, M = ¢lagy,...,ac,,...,a¢, . ,,] and 0 <
z <m+n—k— 1. By the homogeneity stated in (a), for every ¢ in the
uncountable interval ({,_1,(.) we have

M = plagy, ., 0¢,_ Qe Q¢ s ,a<m+n7k71].

The inductive hypothesis (x); implies that

k" ({ogys oy g, gy Qey g e,y -eag, o M) >k

(for any (,—1 < € < £ < (;). Now we easily conclude that &k + 1 <
k" ({aggs 5 Q¢ pr }> M) and (*)r41 follows by the homogeneity given
by (b).

Finally note that (x),,+1 gives the desired conclusion: taking any ey <
... <en—1 < wy we will have m + 1 < rk*({ae, ..., o, }, M).

STEP a = v+ 1: Let M, u,n,m be as in the assumptions, A C p and
|A| > 3..y4w- By the Erdés-Rado theorem we may choose a sequence (o :
e < Ju.y) of distinct elements of A such that the following two demands
are satisfied.
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(c) The quantifier free type of (ae, ..., ,,,,) in M is constant for g9 <
o< Eman < jW'W"

(d) For each k < m-+n the value of min{w-(v+1),1k* ({aeg, - -, Qeppyr i}
M)} is constant for g < ... < Emin—t < Juy-

For any / < w and 7 < 7, we may apply the inductive hypothesis to
{ar e <Juq}, ¢, m+n+1and v to find g9 < ... < gpmqn < Juy such
that rk*({oey, - -+ Qepyn b, M) > w - 4" 4 €. By the homogeneity in (d) this
implies that

(xx)g for all eg < ... < €myn < Ju.y we have
rk*({oeg, oy Qe M) > w0 -y,

Now, by induction on k£ < m + n we argue that

(xx) for each eg < ... < €min—t < (Jury)T we have

w-y 4k <rk*({oey, - e, 1 M).

So assume (x%)g, k < m+n and let { = w;-({+1) (for £ = —1,0,...,m+n)
and 0 < z < m+n—k—1. Suppose that M |= @lac,, ..., ac,, ..., ¢, ]
Then by the homogeneity in (c), for every € in the uncountable interval

(Cz—1,¢z) we have Ml |= plagy, ... 0, 1, Qe, Q¢ yys -, Q1] By the
inductive hypothesis (#*); we know

wey+k <tk ({og, a0, ag, a0, -0, b M)

(for (,—1 < e < & < (). Now we easily conclude that w-~v+k+1 <

k™ ({agys - Q¢pynp1 1> M), and (¥%) 11 follows by the homogeneity in (d).
Finally note that (s#x),,+1 gives the desired conclusion: taking any (p <

. < (po1 < Jyy we will have rk*({aco, ... ,acnfl},M) >w-vy+m+ 1.

STEP « IS LIMIT: Straightforward. U

Definition 2.8. Let \,, be the smallest cardinal A such that Pr,, (\)
and A}, be the smallest cardinal A such that Pr}, ()).

Corollary 2.9. 1. If a <wi, then NPr,, (X,).
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2. Pr} (Ju,) holds and hence also Pry, (s, ).
3. Ny < Ay <A, <y

Proof. (1) Immediately from Proposition 2.6, by induction on o < wj.
(2) Follows from Proposition 2.7 (and 2.6(4)).
(3) By clauses (1), (2) above. O

Proposition 2.10. (See [7, Claim 1.10(1)].) IfP is a ccc forcing notion
and X\ is a cardinal such that Pr, (X\) holds, then IFp “ Prj, () and hence
also Pry, (A) 7.

Proof. Suppose towards contradiction that for some p € P we have
p lFp NP1}, (). Let 7 = {R,, ¢ : n,{ < w} where R, ¢ is an n-ary relation
symbol (for n,{ < w). Then we may pick a name M for a model on A in
vocabulary 7 and an ordinal ag < wy such that

plE “M= (A, {R,iMiC}n,(j<w) is a model such that
(a) for every n and a quantifier free formula ¢(zo,...,Tn—1) € L(T)
there is ( < w such that for all vg, ..., vn—1

M E ¢ho,- - -1l € Rucho, -
(b) sup{rk(w, M) : 0 £ w € [\|*¥} < ap ”.

Now, let S, ¢ g,x be an n—ary predicate (for k <n,( <wand —1 < < ag)
and let 7° = {Spcpr bk <n<w, (<wand —1< B < ap}. (So7*1is
a countable vocabulary.) We define a model M* in the vocabulary 7*. The
universe of M* is A and for £k < n, ( <w and —1 < 8 < ap:

S¥*757k = {(10:--,T-1) E™X 170 < ... < Yp—1 and
some condition g > p forces that

“M = Ryc[v0, -, Yn—1] and tk*({70,...,9m—1}, M) = § and
Ry, ¢, k witness that —\(rk*({’yo, cey 1}, M) > B+ 1) ”}.

Claim 2.10.1. For every n and every increasing tuple (Yo, ..., VYn—1) €
"\ there are ( < w and —1 < B < a9 and k < n such that M* =

S8,k 05 -+ Yn—1]-

Proof of the Claim. Clear. O
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Claim 2.10.2. If ("yo, - ,’yn_l) € "\ and M* lZ Sn,C,,B,k[’YO; R ,’yn_l],
then

rk*({707 s 7771—1}7M*) S 6

Proof of the Claim. First let us deal with the case of § = —1.
Assume towards contradiction that M* |= Sy, ¢ 1 %70, .-, Yn—1], but
rk*({fyo,...,fyn_l},M*) > 0. Then we may find distinct (0 : ¢ < wy) C
A\ {70, .-, -1} such that
(®)1 M* 'Z Sn,(,fl,k[’m: <oy V=1, Oe, Ve+15--- 7”)%—1] for all £ < wy.

For ¢ < wy let p. € P be such that p. > p and

pelF “ME Ryc[Y0,--- 306, s Yn—1]) and
Tk*({%a s 7(5€> s 7’7n71}7M) = —1 and
R, ¢, k witness that

_‘(rk*({’YO, s 77k—175€a7k+17 s ”}/nfl},M) 2 0) 7

Let Y be a name P-name such that pIFY = {e < w; : p- € Gp}. Since P
satisfies ccc, we may pick p* > p such that p* IF “Y is uncountable”. Since

p* I- (V€ € Y) (M ’: Rn,{h@a <o YE—15 567/7/64-17 s 77n71])7

then also
p* - {(5 <AME Ry c[Y0, - Y1505 Vit 1s - - - ,fyn_l]} is uncountable.
But
p* - (Ve € Y)
(Rn(, k witness ﬂ(rk*({yo, ey Vh—15 Oy Yty - - s Y1}, M) > 0)),

and hence

p* - {6 <AN:ME Ry [0, V=150 Vit 15 - - - ,'yn_l]} is countable,

a contradiction.

Next we continue the proof of the Claim by induction on 8 < a,
so we assume that 0 < 8 and for 8/ < S our claim holds true (for any
n,(, k). Assume towards contradiction that M* = S, ¢ 5 %070, .-, Yn-1)s
but rk* ({70, ... ,vn,l},M*) >+ 1. Then we may find distinct (0. : € <
w1) CA\ (w\ {7%}) such that
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(@)1 M* l: Sn,(,ﬂ,kh/ov BRI 77]67175877]64*17 o 77n—1] fOI' all € < Wi, 50 = Yk
and

(@)2 rk*({707 CIEaE 77k7176€75477k+17 CIEa 77n—1}7M*) Z ﬁ fOI' all e< C < wi.

For € < w; let p. € P be such that p. > p and

De I+ “M ': Rn,([’707 cee 7567 e 7771—1]
and I‘k*({’}/07 e 7587 o 7771—1}7M) = B
and Ry, ¢, k witness that

_'(rk*({FY(L s 77k7175€77k+17 s 7’771—1}7M) > B + 1)”

Take p* > p such that
p* I 441/ déf {E <wi: De - GP} is uncountable”.

Since

p* I- (v8 € Y) < M ): Rn,([vo; s 77k7176€77k+17 s 7771—1} A
R, k witness that —(tk* ({30, -6y, Y1}, M) > B+ 1)),

we see that

p* IJ%(VE,( S Y)(E 7é C = rk*({’)/()a cee 77]43—1758)547’)%-0—17 cee 7771—1}7M) Z /B)

Consequently we may pick ¢ > p*, €9,(p < w1 and v < 8 and £ < w and
¢ < n such that d., < d¢, and

q I+ “pé‘oapCo c GP and rk*({707 ce 7’7]67175801 6(077k+17 v 7771—1}7M) =7
and R, ;1¢ and £ witness that

_'(rk*({fy(]: sy V=15 5607 5C0a7k+17 s 7771—1})M) >+ 1)”'

Then M* = Spi1.64.0070 -+ Ve—1,0c05 0o Vit1, - - - s Yn—1] and by the in-
ductive hypOtheSiS rk*({/y()a <o V=1, 5605 6(07 Ve+15--- 77“—1}7 M) < 7, con-

tradicting clause (@)s above. O
O

Corollary 2.11. Let p =23, < k and C be the forcing notion adding
t Cohen reals. Then ¢, Ay, < p <c.
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3. Spectrum of translation non-disjointness
Definition 3.1. Let BC“2and 1 <k <.

1. We say that B is perfectly orthogonal to k—small (or a k—pots—set) if
there is a perfect set P C “2 such that |(B+x) N (B +y)| > & for all
x,y € P.

The set B is a k-npots—set if it is not x—pots.

2. We say that B has A many pairwise k—nondisjoint translations if for
some set X C “2 of cardinality A, for all z,y € X we have |(B +z)N
(B+y)| >~

3. We define the spectrum of translation x-non-disjointness of B as

stnd,(B) = {(z,y) € “2x“2:|(B+2)N(B+y)| >k}

Remark 3.2. 1. Note that if B C “2 is an uncountable Borel set,
then there is a perfect set P C B. For B,P as above for every
x,y € Pwehave 0 =z +xz =y+y € (B+z)N(B+y) and
x+y € (B+x)N(B+y). Consequently every uncountable Borel
subset of “2 is a 2-pots—set.

2. Assume B C “2 and z,y € “2. If b;,by € Band b, + 2 =b, +y €
(B+xz)N(B+y), then also by +y =b, +x € (B+z)N(B+y).
Consequently, if (B + x) N (B + y) # 0 is finite, then it has an even
number of elements.

Proposition 3.3. 1. Let 1 <k <c¢. A set BC¥“2is a k-pots—set
if and only if there is a perfect set P C “2 such that Px P C stnd,(B).

2. Assume k < w. If B is X9, then stndg(B) is X9 as well. If B is
Borel, then stndg(B) and stnd,,(B) are 31 and stnd (B) is Al.

3. Let ¢ < X < and let C, be the forcing notion adding p Cohen reals.
Then, remembering Definition 3.1(2),

IFc,, “if a Borel set B C “2 has A\ many pairwise k-non-disjoint
translates, then B is a k—pots—set”.
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4. If k < w, B is a (code for) XY k-npots-set and P is a forcing notion,
then Ikp “ B is a (code for) k—-npots—set .

5. Assume Pry, (N). If Kk < w and a Borel set B C “2 has A\ many
pairwise k—nondisjoint translates, then it is a k—pots—set.
Proof. (2) Let B = |J F,, where each F, is a closed subset of “2.
n<w
Then
(x,y) € stndg(B) &
(37’1,0, ey N1, M,y -+ o, ME—1, N < w) (32’0, e, Rk—1 € w2) (VZ,] < k)
(i#J=2zIN#zIN) N zi+x € Fy, N zi+y€ Fpy,

The formula

(Vi,j <k)((i #j= 2zIN #2zIN) A zi+x € F,, N zi+y€ Fp,)
represents a compact subset of (w2)k+2 and hence easily the assertion fol-
lows.
(3) This is a consequence of (1,2) above and Shelah [7, Fact 1.16].

(4) If Bis a 39 set then the formula “there is a perfect set P C “2 such
that for all z,y € P we have (z,y) € stndg(B) ” is 33 (remember (2)
above).

(5) By [7, Claim 1.12(1)]. O

We want to analyze k—pots—sets in more detail, restricting ourselves to
39 subsets of “2 and even k < w. For the rest of this section we assume
the following Hypothesis.

Hypothesis 3.4. 1. T,, C“”2is a tree with no maximal nodes (for
n <w);

2. B= | lim(Ty,), T = (T, : n < w);

n<w

3. 2< 1< w, k=2
Definition 3.5. Let My ; consist of all tuples
m = (£m7 umy Bmv gm) = (Ea 'LL, ;L?g)

such that:
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(a) 0 </l <w,uC’and?2< |uf;

(b) h=<(h;:i<1),g=(g;:i<t)and for each i < ¢ we have

hi vl — o  and gi : ul? U (T, ﬂé2)

n<w
(remember u(? = {(n,v) € u x u:n# v});
(¢) 9i(n,v) € Th, () N 9 for all (n,v) € u'?, i <
(d) if (n,v) € u? and i < 1, then 5+ g;(n,v) = v + g;(v,1);

(e) for any (n,v) € uf?, there are no repetitions in the sequence
<9i(777 V)vgi(ya 77) 11 < L>'

Definition 3.6. Assume m = (¢, u, h, g) € My ) and p € £2. We define
m+p = ({,u,k,7) by

o V'=tl, v ={n+p:n€ul},

o 1/ = (h,:i <) whereh!: (u)? — ware such that hl(n+p, v+p) =
hi(n,v) for (n,v) € u'®,

e 7 = (g, :i <) where g/ : (u/)? — U (T, N *2) are such that
B0+ o0+ 0) = gilno) for () € u®
Also if p € “2, then we set m + p = m + (p|f).
Observation 3.7. 1. Ifm € My, andp € fm2 then m+p € My j-
2. For each p € “2 the mapping
M7 — Mg, m—m+p
is a bijection.

Definition 3.8. Assume m,n € My ,. We say that n eztends m
(m C n in short) if and only if:

® lm < /ln, Um = {Uffm ime un}a and
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e for every (n,v) € (un)® such that nfm # v[m and each i < 1 we
have

B (N1, v[m) = B} (n,v)  and  g"(N[lm, v lm) = g;' (0, V) [fm.

Definition 3.9. We define a function® ndrk : My, — ON U {oo}
declaring inductively when ndrk(m) > « (for an ordinal «).

e ndrk(m) > 0 always;
e if o is a limit ordinal, then

ndrk(m) > a < (V8 < a)(ndrk(m) > 3);

e if « = f+ 1, then ndrk(m) > « if and only if for every v € uy, there
isn € MT,k such that £y, > ¢y, m C n and ndrk(n) > § and

{n€un:van>2
e ndrk(m) = oo if and only if ndrk(m) > « for all ordinals «.
We also define
NDRK(T) = sup{ndrk(m) +1: m € My }.
Lemma 3.10. 1. The relation T is a partial order on My ;.
2. Ifmn € Mg, and m C n and o < ndrk(n), then a < ndrk(m).
3. The function ndrk s well defined.
4. If m € My and p € “2 then ndrk(m) = ndrk(m + p).

5 Ifm € My, v € um and ndrk(m) > wy, then there is an n € My
such that m C n, ndrk(n) > w;, and

H{n € un v <an}| > 2.

6. If m € My, and oo > ndrk(m) = 8 > «, then there is n € My
such that m C n and ndrk(n) = .

3 ndrk stands for nondisjointness rank.
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7. If NDRK(T) > w1, then NDRK(T) = oo.

8. Assume m € My ;. and v’ C up, [u'| > 2. Put £/ = by, hi = h}* fu(2
and g, = g™u'? (for i < 1), and let m[v’ = (¢';u',1,g"). Then
mfu' € Mg, and ndrk(m) < ndrk(m[u’).

Proof. (1) Straightforward.

(2) Induction on a. If @ = ap+ 1 and n’ J n is one of the witnesses used
to claim that ndrk(n) > ao+ 1, then this n’ can also be used for m. Hence
we can argue the successor step of the induction. The limit steps are even
easier.

(3) One has to show that if § < a and ndrk(m) > «a, then ndrk(m) > 3.
This can be shown by induction on «a: at the successor stage if n is one of
the witnesses used to claim that ndrk(m) > a + 1, then ndrk(n) > «. By
(2) we get ndrk(m) > « and by the inductive hypothesis ndrk(m) > ~ for
v < . Limit stages are easy too.

(4) Clear.

(5) Let N be the collection of all n € My, such that m C n and |{n €
up : v < n}| > 2. If ndrk(ng) > w; for some ng € N, then we are done.
So suppose towards contradiction that there is no such ng. Then, as N is
countable,

a0 < sup{ndrk(n) + 1 :n € N'} < wi.

But ndrk(m) > agp + 1 implies that ndrk(n;) > o for some n; € N,
a contradiction.

(6) Induction on ordinals § (for all @« < (). The main point is that
if ndrk(m) = f, then for some v € uy we cannot find n as needed for
witnessing ndrk(m) > 8 + 1, but for each v < 5 we can find n needed for
ndrk(m) > 7 + 1. Therefore for each v < 5 we may find n J m such that
v < ndrk(n) < 5.

(7) Follows from (6) above.

(8) Clearly (¢,/,},§') € My, By a straightforward induction on a for
all m and restrictions m[u’, one shows that

a < ndrk(m) = a < ndrk(mfu).
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Proposition 3.11. The following conditions are equivalent.
(a) NDRK(T) > w;.
(b) NDRK(T) = oc.
(¢) There is a perfect set P C “2 such that

(vn.v € PY(I(B+m) 0 (B+)| > k).

(d) In some ccc forcing extension, there is A C “2 of cardinality A, such
that
(Vn,v e A)([(B+n)N(B+v)|>k).

Proof. (a) = (b) This is Lemma 3.10(7).

(b) = (¢) If NDRK(T) = oo then there is mg € My, with ndrk(my)
wi. Using Lemma 3.10(5) we may now choose a sequence (m; : j < w)
M7, such that for each j < w:

>
-

(i) m; Cmyiy,
(ii) ndrk(m;) > wy,
(iii) {7 € um,,, : v < n| > 2 for each v € um;.
Let P ={p€“2: (Vj <w)(pllm; € um,)}. Clearly, P is a perfect set. For
n,v € P, n# v, let jo be the smallest such that Nlm,, #+ V[lm;, and let
Gi(n,v) = J {9 (n1tm,, v1lm;) : § > o} € lim (Th;% W%W%))
for i < v. Then G; : P®» — B and for (,v) € P and i < v:
n+Gi(n,v) =v+Gi(v,n) and n+ Gi(v,n) =v+ Gi(n,v).

Moreover, there are no repetitions in the sequence (G;(n,v), Gi(v,n)14 < ¢).
Hence, for distinct n,v € P we have |(B+n)N (B +v)| > 2t = k.

(¢c) = (d) Assume (c). Let x = J,,. By Corollary 2.11 we know that
lFc, Aw, < c. Remembering Proposition 3.3(1,2), we note that the formula
“P x P C stndg(B)” is IIi, so it holds in the forcing extension by C,. Now
we easily conclude (d).
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(d) = (a) Assume (d) and let P be the ccc forcing notion witnessing this
assumption, G C IP be generic over V. Let us work in V[G].
Let (no : o < Ay,) be a sequence of distinct elements of “2 such that

(Voz < B < /\wl)(|(B+77a) N(B+ng)| > k)

Let 7 = {Rm : m € My, } be a (countable) vocabulary where each Ry, is
a |um|-ary relational symbol. Let M = (A, {Rﬂ}mer k) be the model

in the vocabulary 7, where for m = (¢,u, h,g) € My, the relation RM is
defined by

RM :{(ao, s @up1) € Qo) {nag 1y o -1 16} = w and
for distinct ji, jo < |u| there are G;(«;j,, cvj,) (for i < ¢) such that
9i(May, 1€y, 1€) < Gilyys ) € im (Th, g 160, 10)) a0d
770‘11 + Gi<aj17aj2) = 7706]'2 + Gi(aj27 ajl)

Claim 3.11.1. 1. If ag,0n,..., 051 < Ay, are distinct, j > 2, then
for sufficiently large £ < w there is m € My ;. such that

bn =L, um = {Nagll;.. Na;_, £} and M E Rylao,..., o5 1].

2. Assume that m € Mgy, j < |[umgl, @0,01,. -, Q-1 < Ay and
a* < A\, are all pairwise distinct and such that

M ': Rm[Ozo, sy Oy .,Oz|um|,1]

and

M ): Rm[ao, ceey O, a*, Qjilye.. Oé|um|_1].

Then for every sufficiently large £ > lwy there is n € My . such that
mC n and

Kn = E, Unp = {T]ao m v ’na‘um|,1 M’ Na* M}
and M | Rplao, .., Qjyp)—1, @]

3. If m € My, and M |= Rao, - -, Oy 1], then

rk({ao, - - -, QJyp)—1}, M) < ndrk(m).
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Proof of the Claim. (1) For distinct ji,jo < j let Gi(ey,,04,) € B
(for i < ¢) be such that

Moy, + Gilay,, ajy) = Nay, + Gi(ogy, oy)

and there are no repetitions in the sequence (Gi(«;,, @j,), Gi(oy,, o) 1 @ <
t). (Remember, z € (B+nq,, ) N(B+1na,,) if and only if 2+ (1a,, +7a,,) €
(B + na;,) N (B + 7Na,,), so the choice of Gj(ay,,aj,) is possible by the
assumptions on 7,’s.) Suppose that ¢ < w is such that for any distinct
J1,J2 < j we have 1q,, [ + Nay, ¢ and there are no repetitions in the
sequence (Gj(aj,,0,) [0, Gi(ajy, 05,) 10 0 i < ). Now let u = {na, [l :
j' < j}, and for i < ¢ let 9i(May, 1€, Moy, 1€) = Gi(oy,, aj,) 1, and let
hi(Nag, 1€ Ma;, ) < w be such that Gi(aj,,j,) € lim (Thi(nah [0, )
This defines m = (¢,u, h,g) € My, and easily M = Rmlao, . .., aj-1].

(2) An obvious modification of the argument above.

(3) By induction on 8 we show that for every m € My and
all ag, ..., -1 < Aw, such that M = R[ao, .. ., @y —1]:

B <rk({ao, -, Qyp|-1}, M) implies B < ndrk(m).

STEPS 8 =0 AND [ IS LIMIT: Straightforward.

STEP 8 =7+ 1: Suppose m € My ; and ap, ..., Q-1 < Aw; are such
that Ml |= Rm[o, - - -, Qg —1] and v+ 1 < 1k({ao, ..., qjy—1}, M). Let
V € Um, SO V = N, [€m for some j < |um|. Since

Y+1< I‘k({ao, s 7O‘|um‘—1}7M)
we may find a* € Ay, \ {0, ..., @y, -1} such that
M ): Rm[ao, ceey O, Oé*, Qjily..- 7a\u|—1]

and tk({ao, ..., a)y—1,a"}, M) > 7. Taking sufficiently large ¢ we may
use clause (2) to find n € My, such that m C n, ¢, = ¢ and M |
Rulag, ... apy—1,a"] and [{n € uy : v < n}| > 2. By the inductive
hypothesis we have also v < ndrk(n). Now we may easily conclude that
v+ 1 < ndrk(m). O
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By the definition of A, ,
(©) sup{rk(w, M) 10 # w € A\, ]} >

Now, suppose that § < wy. By (®), there are distinct ag,...,aj-1 < Ay,
J > 2, such that rk({ao,...,a;—1},M) > . By Claim 3.11.1(1) we may
find m € My, such that Ml |= Rm[ao, . .., a;j-1]. Then by Claim 3.11.1(3)
we also have ndrk(m) > 3. Consequently, NDRK(T) > w;.

All the considerations above where carried out in V[G]. However, the
rank function ndrk is absolute, so we may also claim that in V we have
NDRK(T) > w;. O

Corollary 3.12. Assume that ¢ < wy and Prc(\). If there is A C “2
of cardinality \ such that

(vn,v € A)(|(B+n) N (B+wv)| > k),
then NDRK(T) > «.

Proof. This is essentialy shown by the proof of the implication (d) =
(a) of Proposition 3.11. O

4. The forcing

In this section we construct a forcing notion adding a sequence T' of sub-
trees of “>2 such that NDRK(T) < w;. The sequence T will be added
by finite approximations, so it will be convenient to have finite version of
Definition 3.5.

Definition 4.1. Assume that
e 2< 1 <w, k=2,and 0 < n, M < w,

et = (t, : m < M), and each t,, is a subtree of ">2 in which all
terminal branches are of length n,

o T; C“>2 (for j < w) are trees with no maximal nodes, T' = (T} : j <
w) and t,, = Ty, N"22 for m < M,

® My . is defined as in Definition 3.5.



BOREL SETS WITHOUT PERFECTLY MANY OVERLAPPING TRANSLATIONS 25

1. Let M7, consist of all tuples m = ({m, Um, oim, gm) € My, such that
lm < n and rng(h™) C M for each i < .

2. Assume m,n € M7?,. We say that m, n are essentially the same
(m = n in short) if and only if:
® /=Ly, Um = un and

e for each (1,v) € (um)® we have

Hav), g (wvom)} i <o} = {{gi'(n,v), gi (v,m)} 10 <o},

and for ¢, j < ¢
if gi*(n,v) = g} (n,v), then K (n,v) = A (n,v),
if g"(n,v) = gj(v,m), then h™(n,v) = hj(v,n).

3. Assume m,n € M7, . We say that n essentially evtends m (m C* n
in short) if and only if:

® lm < ln, Um = {Uffm ine un}) and

o for every (n,v) € (un)'? such that 5[l # v[lm we have

{0 (11 b, V1 en), 67V b, 1)} 27 < 1}
= {{gPv) M, gP (v, ) [} 18 < 1},
and for ¢, j < ¢

if g;*(nMlm,v ffm)ZQ? (1, ) M, then hi®(n[lm, v Mm):h;l (n,v),
if gzm(ﬁ va v wm):g;l(% 77) [{m, then hin(ﬁ va v ffm):h?(% 77)'

Observation 4.2. If m € M?,_ and p € tm2 then m 4 p € M7,
(remember Definition 3.6).

Lemma 4.3. Let 0 < £ < w and let B C 2 be a linearly independent
set of vectors (in (Y2, +) over (2,42,2)).

1. IfAC?2, |A|>5 and A+ AC B+ B, then for a unique x € 2 we
have A+ x C B.

2. Let b* € B. Suppose that p}, p} € (BU (b* + B)) \ {0,b*} (fori<3)
are such that

(a) there are no repetitions in (p9, p} i < 3), and
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(b) p?+p} =Y+ p} fori<j<3.
Then {{p?,pi}:i <3} C{{b,b+b*}:be B, b#b}.

Proof. Easy, for (1) see e.g. [5, Lemma 2.3]. O

Theorem 4.4. Assume NPr,, (\) and let 3 < v < w. Then there is
a ccc forcing notion P of size A such that

Fp “for some XY 2.-npots-—set B C “2 there is a sequence (1, : o < \)
of distinct elements of “2 such that
(e + B) N (3 + B)| > 20 for all a, 8 < A",

Proof. If ) C “2 is a countable infinite subgroup of “2 then @ is npots
but @ has w-many pairwise w—nondisjoint translations. So we may assume
that A is uncountable.

Fix a countable vocabulary 7 = {R, ¢ : n,{ < w}, where R, ¢ is an
n—ary relational symbol (for n,{ < w). By the assumption on A\, we may
fix a model M = (A, {REL/J’IQ}n,(<w) in the vocabulary 7 with the universe A
and an ordinal o* < wy such that:

(®)a for every n and a quantifier free formula p(zg, ..., x,—1) € L(7) there
is ( < w such that for all ag,...,a,_1 € A,

M ): (p[ao, R ,an_ﬂ = Rnyc[ao, R ,an_l],

(@) sup{rk(v,M) : 0 # v € [\]<¥} < a*,
(®). the rank of every singleton is at least 0.

For a nonempty finite set v C A let rk(v) = rk(v, M), and let {(v) < w and
k(v) < [v| be such that Ry, ¢, k(v) witness the rank of v. Thus letting
{ag,...,ak,...ap—1} be the increasing enumeration of v and k = k(v) and

¢ = ((v), we have

(®)q if tk(v) > 0, then M | R, ¢[ao,...,ax,...,an—1] but there is no
a € X\ v such that

tk(vU{a}) > rk(v) and M = R, ¢[ao,...,ak-1,a, Q1 -, 0Cn-1],
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(®)e if rk(v) = =1, then M |= Ry, ¢[ao, ..., ak, - .., an—1] but the set

{a eX:ME R, ¢[ag,...,a5-1,0, 041, - - ,an_l]}
is countable.
Without loss of generality we may also require that (for ( = ((v), n = |v|)
(®)¢ for every bo,...,bp—1 < A

if M ): Rn,([b()a Ce ;bn—l] then by < ... <bp_1.

Now we will define a forcing notion P. A condition p in P is a tuple
(wp,np,Mp,ﬁp,fp,Fp,ﬁp,gp,Mp) = (w,n, M,ﬁ,t_,f,ﬁ,g,/\/l)
such that the following demands (%);—(x)11 are satisfied.
(x)1 we [N, Jw >5,0<nM<w.

(%x)2 7 = (No : @ € w) is a sequence of linearly independent vectors in
"2 (over the field Zs); so in particular 7, € "2 are pairwise distinct
non-zero sequences (for a € w).

()3 t = {tm : m < M), where () # t,, C "2 for m < M is a tree in
which all terminal branches are of length n and t,, Nt,, N"2 = for
m<m’ < M.

(x)g 7= (rpm:m < M), where 0 < r,,, <n for m < M.

(¥)s h = (h; :i < 1), where h; : w? — M.

(%) G = (gi : i < 1), where g; : w? — (J (t,w N"2), and g;(o, B) €
m<M

thy(ays) and 1o + gi(e, B) = ng + gi(B, ) for (a, B) € w® and i < ¢.

(*¥)7 There are no repetitions in the list
(il B) i <, (o, B) € wl).

(¥)8 M consists of all those m € M7, (see Definition 4.1) that for some
Ly, wy we have
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($)& we Cw, 5 < |wal, 0 < €y = £y < n, and for each (a, B) € (w,)?
and @ < ¢ we have 7y,(4,5) < ls,
(*)g’ Um = {Na[ls : @ € wy} and 1o [ # Nl for distinct o, f € wy,

(¥)§ hm = (R 14 <), where

B (um) P — M (a1, mp16) = hila, B),

(]
(*)§ gm = (g™ :i < 1), where

g (um)® — | 0 %2) 1 (nalle,mpll) = gil, B)1L
m<M

In the above situation we will write m = m(¢,,w,) = mP(l,, w,).
(Note that w, is not determined uniquely by m and we may have
m(/,wy) = m({,w;) for distinct wp,w; C w. Also, the conditions
(¥)3-(*)4 alone do not necessarily determine an element of M%k’ but
clearly for each w, C w of size > 5 we have m”(n?, w,) € MP.)

If m(4,wo), m(¢,w1) € M, p € *2 and m(¢,wy) = m(f,w1) + p,
then rk(wgy) = rk(wy), ((wo) = ((w1), k(wp) = k(w1) and if o € wy,
B € wy are such that |a Nwy| = k(wy) = k(w1) = | N w;y|, then
(nal€) + p = ngll.

If m(ly,we) € M, a € wy, laNwy| = k(wy), rk(wy) = —1, and
m(l,, w,) C* n € M, then [{v € up : (nal¥s) < v} =1

If p2,pt € U (tmN™2) (for i < 1) are such that
m<M

(a) there are no repetitions in (p¥, p} : i < 1), and

(b) p) +pi = p9 + pj fori < j <u,

then for some «, 8 € w we have

{402, p1} ri <o} = {{gi(a, B), gi(B,a)} i < 1}

To define the order < of P we declare for p,q € P that p < ¢ if and only if

wP Cwi, nP <ni, MP < M1?, and

o th, =t N""22 and L, = r, for all m < MP, and
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o b < nd for all o € wP, and

. hg[(u)p)<2> = h¥ and ¢¥(a, 8) < gl(a, B) for i < vand (o, B) € (wp)<2>.

Claim 4.4.1. Assume p = (w,n, M,7,t,h,g, M) € P. If m € M?, is
such that lym = n and |um| > 5, then for some p € "2 and n € M we have
(m+p) =n.

Proof of the Claim. Let m € M?, be such that ¢y, = n. It follows
from Definition 3.5(d,e) and clauses (x)g + (*)11 that

(B) for every (v,1) € (um)® there is (a,3) € w'® such that v+ 7 =
Na + 13-

By Lemma 4.3 for some p we have um +p C {7y : @ € w}. Let wg = {a €
W:Ng+pE umt and n = mP(n,wy) € M. Using clauses (x)11 and (*)g
we easily conclude (m + p) = n. (Note that since t,,, Nty N "2 = @ for
m <m' < M, h™(n,v) is determined by ¢/ (n,v).) O

Claim 4.4.2. 1. P# 0 and (P, <) is a partial order.
2. For each B < A and ng, My < w the set
DZO’M():{pEIP’:np>n0 A MP>My A B€w}
1s open dense in P.

Proof of the Claim. (1) Straightforward.

(2) LetpeP, e X\ wP. Put N = |wP| -1+ 2.
We will define a condition ¢ € P such that ¢ > p and

wi=wPU{B}, ni=n"+N>nP4+1, MI=MP+N-2>MP+1.

For a € wP we set nd = 1570, ...,0) and we also let
——
N
9 0,...,0°(1,... 1)
g = ( ) )
nP+1 N-1

Next, if (g, a1) € (wP){?), then for all i < ¢

hi(ap,a1) = P (ag, 1)  and  gf(ap, 1) = g (a0, 1) (0, ..., 0).

If € wP and j = |wP N al, then for i < ¢
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o g/(a, ) =(0,...,00(1)(0,...,00(1,...,1),

—— ——
np Juti+1 N—ji—i—2
o g{(B,0) =naX(L...,)7(0,...,0),

jiti+2  N—ji—i—2
o hl(B,a) =hi(a,B) = MP+ ju+1i.
We also set:
e if m < MP, then rf, = rh, and
th, ={ne™=2:nin? e th, A (Vi <nh)(n? <j < |n| = n(j) = 0)}
and

o if MP <m < M9, m=DMP+ji+1i,i<cand j < |wP|, then ri, = n?
and
th = {9i(a, B)14, g{ (B, )10 : £ < n},

where a € wP is such that |a N wP| = j.

Now letting M? be defined as in (*)g we check that
q= (wq7 nqa Mqa ,qu, Eqa an Bq, gqa Mp) eP.
Demands (x)1—(*)g are pretty straightforward.

RE (x)g : To justify clause (x)g, suppose that m?(¢, wg), m?(¢,w;) € MY,
p €2 and m?(¢, wp) = m?(¢, w;) + p, and consider the following two cases.

CASE 1: ¢ wogUw;
Then letting ¢* = min(¢,n?) and p* = p[¢* we see that mP({* wy) =
mP(¢*,wy) + p* (and both belong to MP). Hence clause (x)g for p applies.

CASE 2: B € wygUun

Say, 8 € wo. If @ € wp \ {8}, then h!(a, B) = (B, ) > MP and rzq(a g =

n4. Consequently, £ = n4. Moreover,

(7:8) € (@@ A Bi(y,8) = hi(a,8) = {7.6} = {a.B}.

Therefore, 8 € wy and wy = wy and since |wy| > 5, the linear independence
of i implies p = 0.
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RE (%)10: Concerning clause (x)19, suppose that m?(¢y, wp), m?(¢1,w;) €
M1 a € wy, |aNwp| = k(wyp), tk(w) = —1, and m?(4y, wy) =* m9 (41, wy).
Assume towards contradiction that there are ag, @1 € wy such that

ndo M #nd M A ndlilo <nd, A nilby <nd,.

Suppose 8 € wo Uw;. Then looking at the function h] in a manner similar
to considerations for clause (x)g we get 8 € wg Nwy. Let B’ € wo \ {B}.
Then hi(B,8") > MP and hence 7"20(576,) = ni = {y = {1, contradicting
our assumptions. Therefore f ¢ wy U w;. But then we immediately get
contradiction with clause (x)1¢ for p.

RE (x)11 : Let us argue that (x)1; is satisfied as well and for this suppose

that p0, pt € U (tm N™2) (for i <) are such that
m<M43

(a) there are no repetitions in (p?, p} : i < ), and
0, 1 0,4 o1 L
(b) pi +p; =p; +pjfori<j<u
Clearly, if

(@)1 all oY, p; are from Ut
m<MP

then we may use the condition (x)11 for p and conclude that for some
ag, a1 € wP we have

{6, pi} ri <1} = {{gi(aw, 1), gi(on, cg)} 1d < 1}

Now note that if po,p1,p2,03 € U (tm N"™"2), po + p1 = p2 + p3 and
m<Ma

po€ U (tmn™2) but pr ¢ U (tmN""2), then {po,,} = {p2,p3}.
m<MP m<MP

Hence easily, if (©); fails we must have
MI—1 \

(@) Ppte U (#mn™2) fori <.
m=M?P

But then necessarily

{{p)1[n", n%), pi I[P, n9)} 1 i < o}
- {{gi(a,ﬂ)[[np,nq),gi(ﬁ,a)[[ni’,nq)} 1<t @€ wp}.
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(Use Lemma 4.3(2), remember ¢ > 3.) Since (g;(a, 8) + gi(8, @) [In? =
we easily conclude that for some o € wP we have

{{P?»Pg} vi <o) = {{gi(e, 8), (B, )} i <}

One easily verifies that the condition ¢ is stronger than p. O

Claim 4.4.3. The forcing notion P has the Knaster property.

Proof of the Claim. Suppose that (ps : £ < wi) is a sequence of
pairwise distinct conditions from P and let

pe = (we, ng, Mg, g, te, Te, he, Ge, M)

where 7¢ = (s o€ we), te = {5 :m < Me), e = S :m < M¢), and
he = <hf t1 <L), e = (gf 14 < 1). By a standard A-system cleaning
procedure we may find an uncountable set A C wq such that the following
demands (x)12—()15 are satisfied.

(¥)12 {we : £ € A} forms a A-system.

x)13 If £,¢ € A, then |we| = |w ,n——n,ZW——M,al1dt,€n——tg and
3 S 3 S 3 S m
T = ry, (for m < Me).

(¥)14 If € < ¢ are from A and 7 : wg — w; is the order isomorphism, then

(a) m(a) = a for o € we Nwe,

(b) if @ # v C wg, then rk(v) = rk(n[v]), ((v) = ((7[v]) and k(v) =

k(rlv ])

(c) 75 = (for a € we),

(d) gi(a, ) = 9( (@), m(B)) and hi(e, B) = hi(w(a), 7(5)) for
(o, B) € (we)? and i < ¢,

and

()15 Mg = M, (this actually follows from the previous demands).

Following the pattern of Claim 4.4.2(2) we will argue that for distinct
€,< from A the conditions pg,p; are compatible. So let {,¢ € A, { < ¢
and let 7 : wg — w, be the order isomorphism. We will define ¢ =
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w,n, M,7,t,7,h,g, M) where ] = (1o : & € w), t = (ty, : Mm < M),
F=(rm:m< M), and h = (h; :i <), g=(g;:i<u).
Let we Nwg = {ag,...,ap—1}, we \ we = {Po, ..., Be—1} and we \ we =

{70, --.,7¢—1} be the increasing enumerations.

WesetNoza-é(E—i—k)—f—L-@%—l,N:N0+€+1, and we define

(¥)16 w=wgUwg, n =ng+ N, and M = Mg + 1;

(%)17 Mo = nSlA(O, ..., 0) for o € we and we also let for ¢ < ¢
N

e =15, (0) (1, 170, .. 0V (L, 1),
No Cc {—c

Next we are going to define h;(a, 8) and g;(a, B) for (a,) € w'?. For
d < Ny let

vg=(0,...,007(1)70,...,0) € M2 and v; =14y, N2
—— ——
d No—d—1

and note that {vg:d < Ny — 1} U {1} are linearly independent in N02. Fix
a bijection

O : (kxtxutx{0HU({(a,b) € *:a < by xix{1}HUExxtx{2}) — No—1
and define h;, g; as follows.

(¥)35 If (o, B) € (we)? and i < ¢, then

hi(a, B) = hf(a,ﬂ) and g;(«, ) = gf(a,ﬂ)’\(o, .., 0).
N

(x)h Ifa <k, c< Landi <, then hi(ag, V) = h(aq,Ye) and hi(ye, aq) =
h; (e, ), and

g@'(Oéa, 76) = gig(aav 70)A<1>AV@(a,c,i,0)A<07 s )0> and

9i(Yes @a) = g5 (Yes aa)“ﬂ)“yz_‘)(a’c,i’o)“@, L0, D).
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(x){g If b < ¢ < £ and i < ¢, then hi(V,Ye) = h; (Y 7e)s hi(Yes W) =
hlg'(PYCaPYb% and

(Yo Ye) = 95 (W, Ye) (1) Vobein (0,...,0)(1,...,1) and
9i(:7e) = 95 (s 7e) (1) Vo (be,in) X )X ) an

———
b {—b

gi(’)/cv’)/b) = gg(,yc’ Vb)ﬁ<1>/\y®(b7c,i,l)ﬂ<0a SRR 0>A<17 ) 1>
c l—c

(note: vg not ).

(*)(118 Ifb< ¥t c<land b # candi <, then hi(By,ve) = hi(ve, Bp) =

Mg = Mg, and
3 ~1y - —~
) s Ye) = Y5 s Pe 1) v c.i 0,...,0 1,...,1 and
9i(Brsve) = 95 (Bo, Be) (1) Ve(b,e,i2) ¢ ><£ )
gi(’)/c, 51)) = gz‘g(')/ca ’Yb)“(UAVé(b,c,i,z)A(Oa e ,0>'
4

(x){g If b < £ and i < ¢, then hi(Bp, 1) = hi(Vp, Bp) = Me = M, and

; =15 (W) Veousion (0,...,00(1,...,1) and
g(ﬂb?’Yb) 77517 () O(b,b,i,2) <a ) > <7 ) >

——
b b
9i(, Bo) = 115, (1) Vb pi2) (0, -, 0).
‘

We also set:

(%)19 Tm = rfn for m < Mg, TMe =N and if m < Mg, then

{176”22:77[7”L§€t£ AN (Vi<n)(n<j<|n=n0()= }
{g:(6,€)In’ : (6,¢) € w? i <1, and n’ < n and h;(d,€) = m}

and
tae = {gi(6,€)In" : (6,¢) € w? i <1, and 0/ < nand hi(0,e) = M}
Now letting M be defined by (x)g we claim that
q= (w,n, M,7,t,7,h,g, M) € P.

Demands (x)1—(*)g are pretty straightforward.
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RE (x)g : To justify clause (x)g, suppose that m(¢,w’), m(¢,w") € M,
p €2 and m(¢,w') = m(¢,w") + p, and consider the following three cases.

Case 1: o' Cwe

Then for each (§,¢) € (w'){? we have h;(6,) < Mg, so this also holds for

(6,€) € (w")?). Consequently, either w” C wg or w" C w.

If w” C we, then let ¢/ = min(¢, n¢) and consider mPs (w’, '), mPs (w”, ¢') €

M. Using clause (x)g for pe we immediately obtain the desired conclusion.
If w” C we, then we let ¢ = min(¢, n¢) and we consider mP¢(w’, ¢') and

mP¢ (= w”], ') (both from Myg). By (x)14, clause (x)g for pe applies to

them and we get

o rk(w') = k(7™ [w"]), ((w') = (7~ w"]), k(w') = k(7! [w"]) and

o if § € W', e € 7 [w"] are such that |6 Nw'| = k(w') = k(z[w"]) =
le N w”]|, then (n5° [€) + p = £ ¢,

By (#)14 this immediately implies the desired conclusion.

CAsE 2: w' Cwe
Same as the previous case, just interchanging ¢ and .

CASE 3: w' \we # 0 # v\ w

Then for some (d,¢) € (w'){? we have h;(5,€) = Mg, so necessarily ¢ =
Ty, = n. Hence {ny : a € w'} = {na +p: a € w"} and since |w'| > 5,
the linear independence of 77 implies p = 0 and w’ = w” and the desired
conclusion follows.

RE (x)10 : Let us prove clause (*)19 now.

Suppose that m({p,w'), m(¢y,w") € M, § € v, |6 Nw'| = kW),
rk(w') = =1, and m(fp,w") C* m(¢1,w”). Assume towards contradiction
that there are 9,1 € w” such that

(®)o Neo 11 # My 141 and 151y < 1z, and 05 [y < 1, .

Without loss of generality |w”| = |w'| +1 > 6.
Since we must have ¢y < n, for no a, 8 € w’ we can have h;(«a, 8) = M.
Therefore either w’ C wg or w' C w;. Also,

(@)1 if (a, B) € (W) 2\ {(c0,€1), (€1,20)} then h;(a, B) < Mg for i < ¢.
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Note that

(®)2 if (o, B) € (we)? U (we)@ then min({f : na(¢) # 15(¢)}) < ne and
there are no repetitions in the sequence (g;(c, 3)[n¢, gi(5, o) [ng : i <

L).

Let £* = min(fy, n¢).

Now, if w’ U w” C wg, then considering m({y, w') and m(¢*, w”) (and
remembering (®)2) we see that {y < ng, mP¢({y,w') TF mPs(¢*,w") and
they have the property contradicting ()19 for pe.

If w' Uw” C we, then in a similar manner we get contradiction with
(%)10 for p.

If w' C we and w” C w; then one easily verifies that ¢y < ng and
mP¢ £y, w') T mPe(*, 7~ {w"]) provide a counterexample for (x)19 for pe.
Similarly if w" C w¢ and w” C we.

Consequently, the only possibility left is that w”\ we # 0 # w” \ we and
it follows from (®); that |w” \ we| = |[w” \ w¢| = 1. Let {8y} = w” \ we and
{ve} = w"\ we; then {eo,e1} = {Bp, e}

Assume w’ C we (the case when w’ C w, can be handled similarly). If
we had b # ¢, then ng, [ne = ngi Ine # nhe Ine = 1y, [ne. Since w” C (we N
we)U{Bp, Y} we could see that £y < ng and mP¢ (€, w') C* mPe(€*, w1 [w'])
would provide a counterexample for ()19 for p¢. Consequently, b = ¢ and
6y > ng. Now, remembering (®)o, 75" [l = ngi o and mP¢(ly, w') =
mP¢ (Lo, w"” \ {7}), so by (x)g for p¢ we conclude

rk(w” \{w}) =—1 and |80 (" \{%})] = k(w" \ {n}).

Let ¢* = ((w"\{w}) and k* = k(w"\ {}). For e € A\ {{} let 7° : wg —
we be the order isomorphism and let y(e) € n°[w” \ {7}] be such that
|7 [w” \ {}] Ny(e)] = k* (necessarily v(e) = 7°(By) € we \ we). Then

o m[w” \ {n}] = (v N (we Nwe)) U{y(e)} = w’ \ {Bo, w} U{r(e)},

o rk(mw"\ {3}) = —1, and ¢ (=" \ {3}]) = ¢*, and
o k(7w \ {w}]) = K = 7w\ {2} N (E).
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Hence M |= Ry ¢« [w” \ {8y, 1} U {y(e)}] for each e € A\ {¢}. Conse-
quently, the set

{a <AME Ry [0\ {8y, 3} U {a}]}
is uncountable, contradicting (®)e.

RE (%)11 : Let us argue that (x)1; is satisfied as well and for this suppose

that p?, pt € U (t, N"2) (for i <) are such that
m<M

(a) there are no repetitions in (p?, p} : i < ), and
04 1 _ 0, .l L
(b) pi +p; =p; +pjlori<j<u

Clearly, if all p?, p} are form p™0,...,0), then we may use condition ()11
——

N
for pe and conclude that for some ap, a1 € we we have

{{r?,0i} i <1} = {{gi(ao, 1), gilar, o)} i < 1}

So assume that we are not in the situation when all p?, p! are form

p0,...,0).
~——
N
Note that if p € |J (tm, N"2) and p(ng) = 0, then p[ng,n) = 0.
m<M
Hence, remembering definitions in (x)1s, if po, p1,p2,03 € U (tm N"2),

m<M

po + p1 = p2 + p3 and po(ng) = 0 but p1(ng) = 1, then {po, p1} = {p2, p3}-
Therefore, under current assumption, we must have pQ(ng) = pi(ng) = 1
for all 7 < ¢. Define

B ={(ag,v):a<k&c<}

C={(w7):b<ec< L},

D ={(Bp,7e) :b<l&c<l&DbF#cl,

E = {(Bp ) : b <t}
(These four sets correspond to clauses (x)Ps—(*)$g in the definition of g;.)
Clearly, p{(ng¢) = pl(ng) = 1 implies that

pY, ot € {gj(c0,€1),9i(¢1,€0) : (€0,61) € BUCUDUE, j <1}
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Note also that for each d < Ny — 1,

(M), the set {p € U (tm N"2) : pl(ng, ne + No] = vq} is not empty but
m<M
it has at most two elements, and

®) {p € U (tmN™2) : pl(ne,ne + No| = vq}| = 2 if and only if
m<M
d=0(b,c,i,1) for some b < ¢ < ¢ and i < ¢, and

(X)e the set {p € U (tm N"™2) : pl(ng,ne + No] = v} has at most one
m<M
element, and

®)g {p € U (tmnN™2): pl(ng,ne + No] = v} = 0 if and only if d =
m<M
O(b, c,i,1) for some b < ¢ < £ and i < ¢.

Now consider p?[(ng, ng + No], pil F(ng, ne + Ng] for i < ¢.

If for some (i,x) # (j,y) we have pf[(ng,ng + No] = p?[(ng,ng + NO],
then (using (X),—(X)4 and the linear independence of v;’s) we must have
that

0 _ 1 '
Pi [(ng,ng + No] =p; [(ng,ng + No] for all ¢ < ¢.

Thus, for every ¢ < ¢ there are b < ¢ < £ and j < ¢ such that

{02, 01} = {95 (s 7e)s 95 (e 1) }-
Since for b < ¢ < ¢ we have
(95 (5 7e) + 95(Ye>s ) 1(No, No + € = (0,...,0) (1., 1)70,...,0)
b c—b {—c

we immediately get that (in the current situation) for some b < ¢ < £ we
have

{62, pi ri <o} = {{gi(W7e), (Ve W)} 18 < 1}

So let us assume that pf | (ne, ne+No| # Jo [ (ng, ne + No| for all distinct
(i,2),(j,y) € ¢ x 2. Since {1,vp,...,Vn,—2} are linearly independent we
may use Lemma 4.3(2) to conclude that

{{p?[(ng,n{:+N0],p}[(n§,n§—i—NO]} 1< L} - {{yd,ug} :d < Ng — 1}.
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Consequently, we easily deduce that
{{P%P}} i <1} € {{gileo, 1), gi(e1,20)} 1 i <t & (20,€1) € BUDUE},

Using the linear independence of 7:’s and the definitions of g;’s in (*);s one
checks that the three sets
{91(50,81) +gi(61,€0) : (60,81) €B, i< L},
{91(60,81) +gi(51,60) : (60,81) eD, 1< L},
{gi(€0,81) +gi(61,60) : (60,81) el 1< L}
are pairwise disjoint. Therefore, {{p?,pi} : i < ¢} must be included in
(exactly) one of the sets
{{gi(e0, 1), gi(e1,€0)} 1 i <1 & (0,1) € B},
{{gi(e0,€1), gi(e1,€0)} : i < v & (e0,€1) € D}, or
{{gi(eo, 1), gi(e1,€0)} 1 i <1 & (e0,€1) € E}.
But now we easily check that for some (g9,¢1) € BU D U E we must have

{{p?,pzl} i <o} = {{gileo.€1),gi(e1,€0)} i < ¢}

This completes the verification that ¢ = (w,n, M,q,t, F,B,g,/\/l) e P,
and clearly ¢ is stronger than both p¢ and p;. O

Define P-names T'n, and 74 (for m < w and a < \) by
T = U{th :p € Gp A m < MP}", and
Fp“ne = U{na :p € Gp A a € wP}”.

Claim 4.4.4. 1. For each m < w and a < A,

IFp “ Na € “2 and T,, C“>2 is a tree without terminal nodes ”.

2. lkp“ |J lim(7T,,) is a 2cnpots set ”.
m<w
Proof of the Claim. (1) By Claim 4.4.2 (and the definition of the
order in P).

(2) Let G C P be a generic filter over V and let us work in VI[G].
Let k=2cand T = ((T,) : m < w).
Suppose towards contradiction that B = |J lim ((I m)G) is a k—pots

m<w

set. Then, by Proposition 3.11, NDRK(T') = oo. Using Lemma 3.10(5), by
induction on j < w we choose m;, mj; € My ; and p; € G such that

(i) ndrk(m;) > wi, |um,;| > 5 and m; C m}; C myiq,
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(ii) for each v € um: the set {n € um,;,, : v < n} has at least two
elements,

(ii)) pj < Pj+1s bmy < by = 1P < by, and mg(h;’) C MPs for all
1 < t, and

(iv) {nInP7:n € um,;,, } = |um;| = ‘Umﬂ

Then, by (iii)+(iv), m;, m} € M2 . It follows from Claim 4.4.1 that for

ik
' . _nP « N . _— .
some w; C wPi and p; € ™72 we have (m] + p;) = mP7 (nP7, w;) € MPs.
Fix j for a moment and consider m?i (nP7, w;) € MPs
and mPi+1 (nPit1 w;yq) € MPitt. Since

(mj + (pja[n)) E (mj + pjy1) = mP (P4 wi),
we may choose w; C wj41 such that
(M + (pja1[nP7)) = mPi (nPi, w}) TF mPr+ (nPirt wjq)
(and the latter two belong to MPi+1). Then also
mPiH (nP7, wr) = mP (P wj) + (pj + pj+1InP)
= mP (P wi) + (pj + pjta ),
so by clause (x)g for pj;1 we have

rk(w}) = rk(w;).

Clause (ii) of the choice of m; ; implies that
(¥ € w))(30 € wjyr \ wj)(F* InP = g+ k7).

Let 6(7y) be the smallest § € w;11 \ wj with the above property and let

wi(y) = (Wi \ {¥}) U{6(y)}. Then, for y € w}, mP+ (ns, wi(y)) € M+

and
P (0P ) P (P () £ P (0 ),
So by clause (x)g we know that for each v € w;:

rk(wj(y)) = rk(wj), C(wj(y)) = C(w}), and  k(w;(y)) = k(w}).
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Let n = |wj], ¢ = ((w]), k = k(w}), and let w} = {ag,..., k..., an1}
be the increasing enumeration. Let aj = d(ay). Then clause (x)g also
gives that w}‘(ak) = {ao, .., h—1,0Q5, Qpy1,...,ap—1} is the increasing

enumeration. Now,

M Ry cloo, -y 1, Oy Qg 1, - - 5 Q1] and
M Ryclow, -y 1, 05, g1, - - o5 iyt

and consequently if rk(w;) > 0, then
rk(wjt1) < rk(w; U{ag}) < rk(w;) = rk(wy)
(remember (®)q).

Now, unfixing j, suppose that we constructed w;1, w; for all j < w. It
follows from our considerations above that for some jy < w we must have:

(a) rk(wj,) = —1, and

(b) mpj0+1(npj0’w;eo) E* mpjo+1(npj0+17wj0+1)

(and both belong to MPio+1),

ES
(c) for every a € wj we have

{8 € wjys1 : e nPio ngjo“}\ > 1.

However, this contradicts clause (¥)10 (for pjj+1)- O
O
Corollary 4.5. Assume MA and X, < ¢, a < wy. Let 3 <1 < w.

Then there exists a X9 2.-npots-set B C “2 which has R, many pairwise
2t-nondisjoint translations.

Proof. Standard modification of the proof of Theorem 4.4. O

Corollary 4.6. Assume NPty (A\) and A =\ < p =40, 3 <1 < w.
Then there is a ccc forcing notion Q of size p forcing that

(a) 280 = 1 and

(b) there is a ¥ 21-npots-set B C “2 which has A\ many pairwise 2.
nondisjoint translates but not AT such translates.
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Proof. Let P be the forcing notion given by Theorem 4.4 and let
Q = P+ C,. Use Proposition 3.3(4) to argue that the set B added by
P is a npots-set in V. By 3.3(3) this set cannot have A* pairwise 2.
nondisjoint translates, but it does have A many pairwise 2:—nondisjoint
translates (by absoluteness). O

Remark 4.7. It follows from Proposition 3.3(1,2), that if there exists
a %9 pots—set B C “2 such that for some set A C “2 we have (B + a) N
(B+1b) # 0 for all a,b € A, then stnd(B) C “2 x “2 is a X9 set which
contains a |A|-square but no perfect square. Thus Corollary 4.6 is a slight
generalization of Shelah [7, Theorem 1.13].

5. Further research

The case of k = 4 in Theorem 4.4 will be dealt with in a subsequent paper
[6] alongside with further investigations of ¥ subsets of “2 with pregiven
rank NDRK. In subsequent works we will also investigate the general case
of Polish groups (not just “2). The following two problems are still open
however.

Problem 5.1. Is is consistent to have a Borel set B C “2 such that

e for some uncountable set H, (B + z) N (B + y) is uncountable for
every x,y € H, but

e for every perfect set P there are z,y € P with (B 4+ z) N (B + y)
countable?

Problem 5.2. Is it consistent to have a Borel set B C “2 such that
e B has uncountably many pairwise disjoint translations, but

e there is no perfect of pairwise disjoint translations of B 7
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