Warianty tytułu
Języki publikacji
Abstrakty
The correct manufacture of products using FDM printers is not an easy task, taking into account the value and repeatability of material properties. The properties of elements manufactured in this way depend on many factors, both technological and material. Poly(lactic acid) PLA is one of the most willingly used materials in additive techniques. It is sold in a very wide range of colours. This work was intended to answer the question of how the type of pigment affects the mechanical and thermal properties of products obtained from PLA. The correlation between the material properties and the structure of the material as well as the macroscopic structure of the product has also been investigated. The paper analyses the mechanical and thermal properties of products made of PLA filaments in 12 basic colours obtained from one supplier. Bending, impact strength, HDT and Vicat softening point tests were carried out. The percentage content of residues after calcination the samples was determined. Additional analysis (DSC) was performed to interpret the obtained tests results. They indicate that the mechanical properties differ significantly between different types of PLA with differences of up to 45%. Vicat softening point tests indicate differences of 5°C between the extreme values of these parameters. The DSC interpretive study did not clearly show the reasons for these differences in the properties of the filaments.
Czasopismo
Rocznik
Tom
Strony
177-190
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, jacek.iwko@pwr.edu.pl
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Aleja Armii Krajowej 21, 42-224 Czestochowa, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Aleja Armii Krajowej 21, 42-224 Czestochowa, Poland
Bibliografia
- [1] Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Tech. 2013;67(5/8): 1191–1203. doi:10.1007/s00170-012-4558-5
- [2] Gao W, Zhang Y, Ramanujan D et al. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Design. 2015;69: 65–89. doi:10.1016/j.cad.2015.04.001
- [3] Boydston AJ, Cao B, Nelson A et al. Additive manufacturing with stimuli-responsive materials. J. Mater. Chem. A. 2018; 6(42): 20621–45. doi:10.1039/C8TA07716A
- [4] Schwartz JJ, Hamel J, Ekstrom T et al.. Not all PLA filaments are created equal: an experimental investigation. Rapid Prototyping J. 2020;26(7): 1263–76. doi:10.1108/RPJ-06-2019-0179
- [5] Cotteleer M. 3D opportunity: additive manufacturing paths to performance, innovation, and growth. Deloitte Rev. 2014;14: 5–19
- [6] Ngo TD, Kashani A, Imbalzano G et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B-Eng. 2018;143: 172–96. doi:10.1016/j.compositesb.2018.02.012.
- [7] Rouf S, Raina A, Ul Haq MI et al. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Adv. Ind. Eng. Polym. Res. 2022;5(3): 143–58. doi:10.1016/j.aiepr.2022.02.001
- [8] Huang Y, Leu MC, Mazumder J et al. Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 2015;137(1): 1–10. doi:10.1115/1.4028725
- [9] Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 2016;32(1), 54–64. doi:10.1016/j.dental.2015.09.018
- [10] Steenhuis HJ, Pretorius L. The additive manufacturing innovation: a range of implications: J. Manuf. Technol. Manag. 2017;28(1): 122–43. doi:10.1108/JMTM-06-2016-0081
- [11] Dodziuk H. Druk 3D/AM. Zastosowanie oraz skutki społeczne i gospodarcze. Warszawa: Wydawnictwo Naukowe PWN; 2019
- [12] Balletti C, Ballarin M, Guerra F. 3D printing: state of the art and future perspectives. J. Cult. Herit. 2017;26: 172–82. doi:10.1016/j.culher.2017.02.010
- [13] Soares JB, Finamor J, Silva FP et al. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing. Rapid Prototyping J. 2018;24(8): 1305–16. doi:10.1108/RPJ-09-2017-0177
- [14] Bamiduro O, Owolabi G, Haile MA et al. The influence of load direction, microstructure, raster orientation on the quasi-static response of fused deposition modeling ABS. Rapid Prototyping J. 2019;25(3): 462–72. doi:10.1108/RPJ-04-2018-0087
- [15] Fernandes J, Deus AM, Reis L et al. Study of the influence of 3D printing parameters on the mechanical properties of PLA. Materials from 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 2018, 547-52
- [16] Chacon JM, Caminero MA, García-Plaza E et al. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Design. 2017;124: 143–57. doi:10.1016/j.matdes.2017.03.065
- [17] Lanzotti A, Grasso M, Staiano G et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping J. 2015;21(5): 604–17. doi:10.1108/RPJ-09-2014-0135
- [18] Benwood C, Anstey A, Andrzejewski J et al. Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly(lactic acid). ACS Omega. 2018;3(4): 4400–11. doi:10.1021/acsomega.8b00129
- [19] Singh S, Singh M, Prakash C et al. Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts. Int. J. Adv. Manuf. Tech. 2019;102(5/8): 1–16. doi:10.1007/s00170-018-03276-8
- [20] Nguyen NA, Bowland CC, Naskar AK. A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Appl. Mater. Today. 2018;12: 138–52. doi:10.1016/j.apmt.2018.03.009
- [21] Davidson JR, Appuhamillage GA, Thompson CM et al. Design paradigm utilizing reversible Diels-Alder reactions to enhance the mechanical properties of 3D printed materials. ACS Appl. Mater. Inter. 2016;8(26): 16961–6. doi:10.1021/acsami.6b05118
- [22] Jin Y, Wan Y, Zhang B et al. Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J. Mater. Process. Tech. 2017;240: 233–9. doi:10.1016/j.jmatprotec.2016.10.003
- [23] Cristea M, Ionita D, Iftime MM. Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful? Materials. 2020;13(22), 5302–22. doi:10.3390/ma13225302
- [24] Müller AJ, Ávila M, Saenz G et al. CHAPTER 3. Crystallization of PLA-based Materials, in: Jiménez A, Peltzer M, Ruseckaite R (eds.) RSC Polymer Chemistry Series, No. 12. Cambridge: Royal Society of Chemistry; 2014. doi:10.1039/9781782624806-00066
- [25] Rueda MM, Auscher MC, Fulchiron R et al. Rheology and applications of highly filled polymers: a review of current understanding. Prog. Polym. Sci. 2017;66: 22–53. doi:10.1016/j.progpolymsci.2016.12.007
- [26] Wittbrodt B, Pearce JM. The effects of PLA colour on material properties of 3D printed components. Addit. Manuf. 2015;8: 110–6. doi:10.1016/j.addma.2015.09.006
- [27] Bociąga E, Postawa P, Trzaskalska M. Influence of coloring agents and injection process conditions on the mechanical properties of ABS. Polymer Processing, 2012;18(3): 143-146 (in Polish)
- [28] Bociąga E, Trzaskalska M. Influence of polymer processing parameters and coloring agents on gloss and color of acrylonitrile-butadiene-styrene terpolymer moldings. Polimery. 2021;61(7/8): 544–550. doi: 10.14314/polimery.2016.544
- [29] Valerga AP, Batista M, Salguero J et al. Influence of PLA filament conditions on characteristics of FDM parts. Materials. 2018;11(8): 1322. doi:10.3390/ma11081322
- [30] Standardization roadmap for additive manufacturing V.2.0, America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), Jun 2018, USA
- [31] Bigg DM. Polylactide copolymers: Effect of copolymer ratio and end capping on their properties. Adv. Polym. Tech. 2005;24(2): 69–82. doi:10.1002/adv.20032
- [32] Pyda M, Czerniecka-Kubicka A. Thermal Properties and Thermodynamics of Poly(l-lactic acid. in: Di Lorenzo ML, Androsch R. (eds.) Synthesis, Structure and Properties of Poly(lactic acid). Cham: Springer International Publishing; 2018, 153. doi:10.1007/978-3-319-64230-7
- [33] Hortos M, Vinas M, Espino S et al. Influence of temperature on high molecular weight poly(lactic acid) stereocomplex formation. Express Polym. Lett. 2019;13(2): 123–34. doi:10.3144/expresspolymlett.2019.12
- [34] Shen L, Worrell E, Patel M. Present and future development in plastics from biomass. Biofuel. Bioprod. Bior. 2010;4(1): 25–40. doi:10.1002/bbb.189
- [35] Gracia-Fernández CA, Gómez-Barreiro S, López-Beceiro J et al. New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J. Mater. Res. 2012;27(10): 1379–82. doi:10.1557/jmr.2012.57
- [36] Foglia F, De Meo A, Iozzino V et al. Isothermal crystallization of PLA: Nucleation density and growth rates of α and α′ phases. Can. J. Chem. Eng. 2020;98(9): 19982007. doi:10.1002/cjce.23818
- [37] Mathot VBF. Crystallization of polymers: A personal view on a lifetime in research. J. Therm. Anal. Calorim. 2010;102(2): 403–12. doi:10.1007/s10973-010-0947-x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-672e0603-bab2-4440-8ebd-db07bebee388