Warianty tytułu
Języki publikacji
Abstrakty
In this paper a problem of modelling thermal properties of large LED modules is considered. The compact thermal model of such modules is proposed. The form of this model is presented and a method of parameters estimation is described. The practical usefulness of this model is verified experimentally by comparing the results of calculations and measurements of internal temperature of selected LEDs included in LED modules. The modules were fabricated by Fideltronic, Poland and measurements of temperature distribution on the surface of the modules at selected variants of power dissipation were performed at the Gdynia Maritime University. Good agreement between the results of measurements and modelling was obtained.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
628--638
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
autor
- Gdynia Maritime University, Department of Marine Electronics, Gdynia, Poland
autor
- Gdynia Maritime University, Department of Marine Electronics, Gdynia, Poland, k.gorecki@we.am.gdynia.pl
autor
- AGH University of Science and Technology, Department of Electronics, Cracow, Poland
Bibliografia
- [1] FARKAS G., BEIN M.C., GAAL L., Multi domain modelling of power LEDs based on measured isothermal and transient I-V-L characteristics, in PERRY J. (Ed.), Proceedings of 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Budapest, 2016, p. 181.
- [2] POPPE A., Microelectron. J., 46 (2015), 1138.
- [3] CHANG M.-H., DAS D., VARDE P.V., PECHT M., Microelectron. Reliab., 52 (2012), 762.
- [4] SONG B.-M., HAN B., LEE J.-H., Microelectron. Reliab., 53 (2013), 435.
- [5] GÓRECKI K., PTAK P., Microelectron. Reliab., 79 (2017), 440.
- [6] GÓRECKI K., DZIURDZIA B., PTAK P., Solder. Surf. Mt. Tech., 30 (2) (2018), 81.
- [7] DZIURDZIA B., SOBOLEWSKI M., MIKOŁAJEK J., Solder. Surf. Mt. Tech., 30 (2) (2018), 87.
- [8] UDDIN S., SHAREEF H., MOHAMED A., HANNAN M.A., Przegląd Elektrotechniczny, 88 (11) (2011), 266.
- [9] GÓRECKI K., PTAK P., Microelectron. Int., 32 (3) (2015), 152.
- [10] WEIR B., IEEE Spectrum, 49 (3) (2012), 42.
- [11] MARTIN P.S., High power white LED technology for Solid State Lighting, Lumileds, 2005.
- [12] KRAMES M., Progress and future direction of LED technology. 2003, [Online], available at: http://www.netl.doe.gov/ssl/PDF's/Krames.pdf.
- [13] SCHUBERT E.F., Light emitting diodes. Second edition, Cambridge University Press, New York, 2008.
- [14] GÓRECKI K., Microelectron. Reliab., 55 (2) (2015), 389.
- [15] BAGNOLI P.E., CASAROSA C., CIAMPI M., DALLAGO E., IEEE T. Power Electr., 13 (6) (1998), 1208.
- [16] GÓRECKI K., PTAK P., The influence of the mounting manner of the power LEDs on its thermal and optical parameters, in: NAPIERALSKI A. (Ed.), Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems MIXDES, Lublin, 2014, 303.
- [17] GÓRECKI P., GÓRECKI K., ZARĘBSKI J., IOP Conf. Ser., 1033 (2018), 1.
- [18] LASANCE C.J.M., POPPE A., Thermal management for LED applications, Springer Science+Business Media, New York, 2014.
- [19] GÓRECKI K., PTAK P., JANICKI M., TORZEWICZ T., Influence of cooling conditions of power LEDs on their electrical, thermal and optical parameters in: NAPIERALSKI A. (Ed.), Proceedings of 25th International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2018, Gdynia, 2018, 237.
- [20] TORZEWICZ T., PTAK P., GÓRECKI K., JANICKI M., Influence of LED Operating Point and Cooling Conditions on Compact Thermal Model Element Values, in PERRY J. (Ed.), Proceedings of the 24th International Workshop on Thermal Investigations of ICs and Systems, Stockholm, 2018.
- [21] GÓRECKI K., PTAK P., Modelling LED Lamps with Thermal Phenomena Taken into Account, in PERRY J. (Ed.), Proceedings of 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Budapest, (2016), 202.
- [22] http://fideltronik.com/pl/ accessed on 2018.09.28.
- [23] Datasheet XP-G2 diode, https://www.cree.com/led-components/media/documents/XLampXPG2. pdf, accessed on 2018.09.28.
- [24] ILLES B., SKWAREK A., GECZY A., KRAMMER O., BUSEK D., Int. J. Heat Mass Tran., 114 (2017), 613.
- [25] LIVOVSKY L., PIETRIKOVA A., Solder. Surf. Mt. Tech., 29 (1) (2017), 42.
- [26] SYNKIEWICZ B., SKWAREK A., WITEK K., Solder. Surf. Mt. Tech., 26 (1) (2014), 8.
- [27] ULZHÖFER CH., SMT, 4 (2012), 1.
- [28] Data Sheet "ALPHA OM340 Solder paste", https://alphaassembly.com/Products/Solder-Paste/OM-340 (2018), accessed on 2018.09.28.
- [29] CASTELLAZZI A., GERSTENMAIER Y.C., KRAUS R., WACHUTKA G.K.M., IEEE T. Power Electr., 21 (3) (2006), 603.
- [30] GÓRECKI K., ZARĘBSKI J., IEEE T. Comp. Pack. Man. Tech., 4 (3) (2014), 421.
- [31] ZARĘBSKI J., GÓRECKI K., Appl. Math. Model., 31 (8) (2007), 1489.
- [32] ZARĘBSKI J., GÓRECKI K., IEE Proc. Cicuits Dev. Sys., 153 (1) (2006), 46.
- [33] RAYPAH M.E., DEVARAJAN M., AHMED A.A., SULAIMAN F., J. Appl. Phys., 123 (10) (2018), 105703.
- [34] Datasheet A/D Converter USB-1608G, https://www.mccdaq.com/pdfs/manuals/usb-1608g-series.pdf, accessed on 2018.09.28.
- [35] Datasheet of infrared camera Flir i5, http: //www.amc-magazin.ro/PRODUSE-DOC/FLIR/ FLIR%20i5.pdf, accessed on 2018.09.28.
- [36] OETTINGER F.F., BLACKBURN D.L., RUBIN S., IEEE T. Electron Dev., 23 (8) (1976), 831.
- [37] GÓRECKI K., ROGALSKA M., ZARĘBSKI J., Microelectron. Reliab., 54 (5) (2014), 978.
- [38] GÓRECKI K., PTAK P., IEEE T. Instrum. Meas., (2019) in press, doi: 10.1109/TIM.2019.2894043
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-670712aa-4332-4549-9c54-a355d94c44fc