Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 29, nr 1 | 105--112
Tytuł artykułu

On deferred statistical convergence of complex uncertain sequences

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Complex uncertain variables are measurable functions from an uncertain space to the set of complex numbers and are used to model complex uncertain quantities. In this paper, we introduce the deferredstatistically convergence concepts of complex uncertain sequences, deferred-statistically convergence almost surely, deferred-statistically convergence in measure, deferred-statistically convergence in mean and some relationship among them are discussed.
Wydawca

Rocznik
Strony
105--112
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India, shyamalnitamath@gmail.com
autor
Bibliografia
  • [1] T. Acar and F. Dirik, Korovkin type theorems in weighted Lp spaces via summation process, Sci. World J. 2013 (2013), Article ID 534054.
  • [2] T. Acar and S. A. Mohiuddine, Statistical (C, 1)(E, 1) summability and Korovkin’s theorem, Filomat 30 (2016), no. 2, 387-393.
  • [3] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33 (1932), no. 3, 413-421.
  • [4] N. L. Braha, T. Mansour, M. Mursaleen and T. Acar, Convergence of λ-Bernstein operators via power series summability method, J. Appl. Math. Comput. 65 (2021), no. 1-2, 125-146.
  • [5] X. Chen, Y. Ning and X. Wang, Convergence of complex uncertain sequences, J. Intell. Fuzzy Syst. 30 (2016), no. 6, 3357-3366.
  • [6] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and its Applications, 2010.
  • [7] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63.
  • [8] B. Das, B. C. Tripathy, P. Debnath, J. Nath and B. Bhattacharya, Almost convergence of complex uncertain triple sequences, Proc. Nat. Acad. Sci. India Sect. A 91 (2021), no. 2, 245-256.
  • [9] I. A. Demirci and M. Gürdal, On lacunary generalized statistical convergent complex uncertain triple sequence, J. Intell. Fuzzy Syst. 41 (2021), 1021-1029.
  • [10] A. Esi, S. Debnath and S. Saha, Asymptotically double λ2-statistically equivalent sequences of interval numbers, Mathematica 62(85) (2020), no. 1, 39-46.
  • [11] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [12] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. (3) 37 (1978), no. 3, 508-520.
  • [13] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.
  • [14] P. Garrancho, A general Korovkin result under generalized convergence, Constr. Math. Anal. 2 (2019), no. 2, 81-88.
  • [15] Ö. Kişi, Sλ(I)-convergence of complex uncertain sequence, Mat. Stud. 51 (2019), no. 2, 183-194.
  • [16] Ö. Kişi and H. K. Ünal, Lacunary statistical convergence of complex uncertain sequence, Sigma J. Eng. Nat. Sci. 10 (2019), 277-286.
  • [17] M. Küçükaslan and M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), no. 2, 357-366.
  • [18] B. Liu, Uncertain risk analysis and uncertain reliablity analysis, J. Uncertain Syst. 4 (2010), no. 3, 163-170.
  • [19] B. Liu, Uncertainty Theory. A Branch of Mathematics for Modelling Human Uncertainty, Springer, Berlin, 2010.
  • [20] B. Liu, Uncertain logic for modelling human language, J. Uncertain Syst. 5 (2011), 3-20.
  • [21] B. Liu, Uncertainty Theory, 4th ed., Springer, Heidelberg, 2015.
  • [22] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), no. 1, 111-115.
  • [23] M. Mursaleen, S. Debnath and D. Rakshit, I-statistical limit superior and I-statistical limit inferior, Filomat 31 (2017), no. 7, 2103-2108.
  • [24] P. K. Nath and B. C. Tripathy, Convergent complex uncertain sequences defined by Orlicz function, An. Univ. Craiova Ser. Mat. Inform. 46 (2019), no. 1, 139-149.
  • [25] S. Orhan, T. Acar and F. Dirik, Korovkin type theorems in weighted Lp-spaces via statistical A-summability, An. Ştiinț. Univ. Al. I. Cuza Iaşi. Mat. (N. S.) 62 (2016), no. 2, 537-546.
  • [26] Z. Peng, Complex uncertain variable, Doctoral Dissertation, Tsinghua University, 2012.
  • [27] S. Roy, S. Saha and B. C. Tripathy, Some results on p-distance and sequence of complex uncertain variables, Commun. Korean Math. Soc. 35 (2020), no. 3, 907-916.
  • [28] S. Saha, B. C. Tripathy and S. Roy, On almost convergence of complex uncertain sequences, New Math. Nat. Comput. 16 (2020), no. 3, 573-580.
  • [29] E. Savas and S. Debnath, Lacunary statistically ϕ-convergence, Note Mat. 39 (2019), no. 2, 111-119.
  • [30] E. Savas, S. Debnath and D. Rakshit, On I-statistically rough convergence, Publ. Inst. Math. (Beograd) (N. S.) 105(119) (2019), 145-150.
  • [31] E. Savaş and M. Gürdal, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Systems 27 (2014), no. 4, 1621-1629.
  • [32] E. Savas and M. Gürdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science Asia 41 (2015), 289-294.
  • [33] E. Savaş and M. Gürdal, I-statistical convergence in probabilistic normed spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), no. 4, 195-204.
  • [34] E. Savaş and M. Gürdal, Ideal convergent function sequences in random 2-normed spaces, Filomat 30 (2016), no. 3, 557-567.
  • [35] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
  • [36] B. C. Tripathy and P. K. Nath, Statistical convergence of complex uncertain sequences, New Math. Nat. Comput. 13 (2017), no. 3, 359-374.
  • [37] C. You, On the convergence of uncertain sequences, Math. Comput. Modelling 49 (2009), no. 3-4, 482-487.
  • [38] C. You and L. Yan, Relationships among convergence concepts of uncertain sequences, Comput. Model. New Technol. 20 (2016), no. 3, 12-16.
  • [39] C. You and L. Yan, The p−distance of uncertain variables, J. Intell. Fuzzy Syst. 32 (2017), 999-1006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-66f8d84a-7322-4d82-ad5d-a4a63fe493e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.