Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 16, no. 4 | 33--44
Tytuł artykułu

Conceptual architectural response to radiation on Mars

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The climatic conditions on Mars are significantly different from those on Earth, which is the main factor affecting the potential architectural solutions on this planet. Above all, high levels of cosmic radiation of solar and extragalactic origin require specific architectural solutions, such as a safe location and sufficient protection, which are determined by a complex set of factors. These factors include the accessibility of building materials on site, the range and predictability of changes in climatic conditions, and human needs. In this article, the significant influence of radiation on architecture, which should be addressed when planning temporary or permanent resilient settlements on Mars, is examined in the case of manned missions to the planet. For this purpose, a comprehensive literature review is conducted, focused on the latest radiation-related discoveries. As the main outcome, two main schematic architectural solutions are proposed as a step toward more advanced projects. In addition, the gaps that need to be filled in the current approach to the design process, related to the insufficiently strong focus on multidisciplinary site analysis with radiation as its main factor (as is necessary for erecting an inhabitable base) are addressed.
Wydawca

Rocznik
Strony
33--44
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Architecture, Sarajevo, Bosnia and Herzegovina, tomasz.malec1@gmail.com
  • Academy of Silesia, Katowice, Poland
Bibliografia
  • [1] NASA Science. (2022, May 5). Solar System Exploration. https://solarsystem.nasa.gov/
  • [2] Jakosky, B. M. (2019). The CO2 inventory on Mars. Planetary and Space Science, 175, 52–59. https://doi.org/10.1016/j.pss.2019.06.002
  • [3] Kurokawa, H., Kurosawa, K., & Usui, T. (2018). A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus, 299, 443–459. https://doi.org/10.1016/j.icarus.2017.08.020
  • [4] Scherf, M., & Lammer, H. (2021). Did Mars Possess a Dense Atmosphere During the First ~ 400 Million Years? Space Science Review, 217. https://doi.org/10.1007/s11214-020-00779-3
  • [5] NASA Science. (n.d.). Mars Weather. Retrieved June 23, 2023, from https://mars.nasa.gov/msl/weather/
  • [6] Zhang, J., Guo, J., & Dobynde, M. I. (2023). What is the Radiation Impact of Extreme Solar Energetic Particle Events on Mars? Space Weather, 21(6), 1–13. https://doi.org/10.1029/2023SW003490
  • [7] United States Department of Labor (n.d.). Non-Ionizing Radiation. https://www.osha.gov/non-ionizing-radiation
  • [8] European Organization for Nuclear Research [CERN]. (n.d., May 13). Cosmic rays: particles from outer space. https://home.cern/science/physics/cosmic-rays-particles-outer-space
  • [9] Stanford Solar Center [SSC]. (n.d., May 14). Tracking solar flares. http://solar-center.stanford.edu/SID/activities/ionosphere.html
  • [10] Thoudam, S., Rachen, J. P., van Vliet, A., Achterberg, A., Buitink, S., Falcke, H., & Hörandel, J.R. (2016). Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component. Astronomy & Astrophysics, 595(A33). https://doi.org/10.1051/0004-6361/201628894
  • [11] Obodovskiy, I. (2019). Radiation Fundamentals, Applications, Risks, and Safety. Elsevier. https://doi.org/10.1016/C2016-0-02609-8
  • [12] Logachev, Yu. I., Zeldovich, M. A., Surova, G. M., & Kecskemety, K. (2003). Energy Spectrum of Galactic 10–100 MeV Protons in Quiet Sun Periods. Cosmic Research 41, 13–18. https://doi.org/10.1023/A:1022395311635
  • [13] Muscheler, R. (2013). Ice Core Methods | 10Be and Cosmogenic Radionuclides in Ice Cores. In Elias S. A. & Mock C. J. (Eds.), Encyclopedia of Quaternary Science (Second edition) (353–360). https://doi.org/10.1016/B978-0-444-53643-3.00328-9
  • [14] Rahmanifard, F., de Wet, N., W. C., Schwadron, A., Owens, M. J., Jordan, A. P., Wilson, J. K., Joyce, C. J., Spence, H. E., Smith, C. W., & Townsend, L. W. (2020). Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum. Space Weather, 18(9). https://doi.org/10.1029/2019SW002428
  • [15] Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Reitz, G., Cucinotta, F. A., Kim, M.-H., Grinspoon, D., Bullock, M. A.,…Moores, J. E. (2014). Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science, 343(6169). https://doi.org/10.1126/science.1244797
  • [16] Paris, A. J., Davies, E. T., Tognetti, L., & Zahniser, C. (2019). Prospective Lava Tubes at Hellas Planitia. Journal of the Washington Academy of Sciences.
  • [17] Blanchett, A. (2017, September 19). Space Radiation is Risky Business for the Human Body. NASA. Human Research. https://www.nasa.gov/feature/space-radiation-is-risky-business-for-the-human-body
  • [18] NASA. (2018, June 8) Space Radiation (HRP Elements). https://www.nasa.gov/hrp/elements/radiation/risks
  • [19] International Commission on Radiological Protection [ICRP]. (n.d.). Recommendations. https://www.icrp.org/consultation_viewitem.asp?guid=%7B012C4E04-7B2F-4A2E-B010-B7F614B3BEE0%7D
  • [20] World Nuclear Association. (2022, October). Radiation and Health Effects. World-nuclear.org. https://world-nuclear.org/information-library/safety-and-security/radiation-and-health/radiation-and-health-effects.aspx
  • [21] International Atomic Energy Agency [IAEA]. (n.d.). Radiation in Everyday Life. https://www.iaea.org/Publications/Factsheets/English/radlife
  • [22] Cekanaviciute, E., Rosi S., & Costes, S.V. (2018). Central nervous system responses to simulated galactic cosmic rays. International Journal of Molecular Sciences 19(11). https://www.mdpi.com/1422-0067/19/11/3669/htm
  • [23] Dobynde, M. I., Shprits, Y. Y., Drozdov, A. Y., Hoffman, J., & LI, J. (2021). Beating 1 Sievert: Optimal Radiation Shielding of Astronauts on a Mission to Mars. Space Weather, 19(9). https://doi.org/10.1029/2021SW002749
  • [24] Rojdev, K., & Atwell, W. (2015). Hydrogen-and Methane-Loaded Shielding Materials for Mitigation of Galactic Cosmic Rays and Solar Particle Events. Gravitational and Space Research, 3(1). https://doi.org/10.2478/gsr-2015-0006
  • [25] Naito, M., Kodaira, S., Ogawara, R., Tobita, K., Someya, Y., Kusumoto, T., Kusano, H., Kitamura, H., Koike, M., Uchihori, Y., Yamanaka, M., Mikoshiba, R., Endo, T., Kiyono, N., Hagiwara, Y., Kodama, H., Matsuo, S., Takami, Y., Sato, & T., Orimo, Si. (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26, 69–76. https://doi.org/10.1016/j.lssr.2020.05.001
  • [26] Yokoo, S., Hirose, K., Tagawa, S., Morard, G., & Ohishi, Y. (2022). Stratification in planetary cores by liquid immiscibility in Fe-S-H. Nature Communications 13(644). https://doi.org/10.1038/s41467-022-28274-z
  • [27] Yao, C., & Ma, Y. (2021). Superconducting materials: Challenges and opportunities for large-scale applications. iScience, 24(6), 102541. https://doi.org/10.1016/j.isci.2021.102541
  • [28] Lutz, K., Cadiou, H., Trevino, T., & Cinelli, I. (2021). Electromagnetic Fields to Sustain Life on Earth, in Space, and Planets. 72nd International Astronautical Congress (IAC), Dubai. https://www.researchgate.net/publication/356474843_Electromagnetic_Fields_to_Sustain_Life_on_Earth_in_Space_and_Planets
  • [29] Norimura, T., Imada, H., Kunugita, N., Yoshida, N., & Nikaido, M. (1993). Effects of strong magnetic fields on cell growth and radiation response of human T-lymphocytes in culture. Journal of UOEH, 15(2), 103–112. https://doi.org/10.7888/juoeh.15.103
  • [30] Saunders, R. (2005). Static magnetic fields: animal studies. Progress in Biophysics and Molecular Biology, 87(2–3), 225–239. https://doi.org/10.1016/j.pbiomolbio.2004.09.001
  • [31] Bamford, R. A., Kellett, B. J., Green, J. L., Dong, C., Airapetian, V., & Bingham, B. (2021). How to create an artificial magnetosphere for Mars. Acta Astronautica, 190, 323–333. https://doi.org/10.1016/j.actaastro.2021.09.023
  • [32] Bloshenko, A. D., Robinson, J. M., Colon, R. A., & Anchordoqui, L. A. (2021). Health threat from cosmic radiation during manned missions to Mars. Proceedings of Science, 37th International Cosmic Ray Conference, 15–22 July, 2021, Berlin. https://doi:10.5281/zenodo.4327684
  • [33] Khuller, A. R., Christensen, P. R., & Warren, S. G. (2021). Spectral Albedo of Dusty Martian H2O Snow and Ice. Journal of Geophysical Research: Planets, 126(9). https://doi.org/10.1029/2021JE006910
  • [34] Khuller, A. R., & Christensen, P. R. (2021). Evidence of exposed dusty water ice within martian gullies. Journal of Geophysical Reasearch: Planets, 126. https://doi.org/10.1029/2020JE006539
  • [35] Zhang, J., Guo, J., Dobynde, M. I., Wang, Y., & Wimmer-Schweingruber, R. F. (2022). From the Top of Martian Olympus to Deep Craters and Beneath: Mars Radiation Environment Under Different Atmospheric and Regolith Depths. Journal of Geophysical Research: Planets, 127(3). https://doi.org/10.1029/2021JE007157
  • [36] Tillman, N. T. (2017, December 9). Valles Marineris: Facts About the Grand Canyon of Mars. Space.com. https://www.space.com/20446-valles-marineris.html
  • [37] Mitrofanov, I., Malkhov, A., Djachkova, A., Golovin, D., Litvak, M., Mokrousov, M., Sanin, A., Svedhem, H., & Zelenyi, L. (2022). The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus, 374. https://doi.org/10.1016/j.icarus.2021.114805
  • [38] Butcher, F. E. (2022). Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science. Oxford University Press. Retrieved 24 June 2022, from https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-239
  • [39] NASA. (2016, November 22) Mars Ice Deposit Holds as Much Water as Lake Superior. https://www.nasa.gov/feature/jpl/mars-ice-deposit-holds-as-much-water-as-lake-superior
  • [40] Chen, J. L., Yun, S. J., Dong, T. K., Ren, Z. Z., & Zhang, X. P. (2022). Studies of the radiation environment on the Mars surface using the Geant4 toolkit. Nuclear Science and Techniques 33(11). https://doi.org/10.1007/s41365-022-00987-2
  • [41] Guo, J., Khaksarighiri, S., Wimmer-Schweingruber, R. F., Hassler, D. M., Ehresmann, B., Zeitlin, C., Löffler, S., Matthiä, D., Berger, T., Reitz, G., & Calef, F. (2021). Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021GL093912
  • [42] Mangan, T. P., Plane, J. M. C., & Murray, B. J. (2021). The Phase of Water Ice Which Forms in Cold Clouds in the Mesospheres of Mars, Venus, and Earth. Journal of Geophysical Research: Planets, 126(3). https://doi.org/10.1029/2020JE006796
  • [43] Mifsud, D.V., Hailey, P.A., Herczku, P., Juhász, Z., Kovács, S. T. S., Sulik, B., Ioppolo, S., Kaňuchová, Z., McCullough, R. W., Paripás, B. & Mason, N. J. (2022). Laboratory experiments on the radiation astrochemistry of water ice phases. The European Physical Journal D (76)87. https://doi.org/10.1140/epjd/s10053-022-00416-4
  • [44] NASA. (2016, December 29) A New Home on Mars: NASA Langley’s Icy Concept for Living on the Red Planet. https://www.nasa.gov/feature/langley/a-new-home-on-mars-nasa-langley-s-icy-concept-for-living-on-the-red-planet
  • [45] Cushing, G. E. (2015). Mars Global Cave Candidate Catalog PDS4 Archive Bundle. PDS Cartography and Imaging Sciences Node (IMG). https://doi.org/10.17189/1519222
  • [46] Williams, M. (2016, December 19). How strong is the gravity on Mars? Universe Today. https://www.universetoday.com/14859/gravity-on-mars/
  • [47] Van Ellen, L., & Peck, D. (2018). Use of in situ ice to build a sustainable radiation shielding habitat on Mars. 69th International Astronautical Congress, Bremen. https://www.researchgate.net/publication/342145558_Use_of_in_situ_ice_to_build_a_sustainable_radiation_shielding_habitat_on_Mars
  • [48] Blachowicz, T., & Ehrmann, A. (2021). Shielding of Cosmic Radiation by Fibrous Materials. Fibres, 9(60). https://doi.org/10.3390/fib9100060
  • [49] Roberts, A. D., Whittall, D. R., Breitling, R., Takano, E., Blaker, J. J., Hay, S., & Scrutton, N. S. (2021). Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Materials Today Bio, 12. https://doi.org/10.1016/j.mtbio.2021.100136
  • [50] Shiwei, N., Dritsas, S., & Fernandez, J. G. (2020). Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLoS ONE 15(9). https://doi.org/10.1371/journal.pone.0238606
  • [51] NASA. (2019, May 4) Teams 3D Print Planetary Habitats, Awarded $700K in NASA Challenge. https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/19-017.html
  • [52] Designboom (2023, February 17). Interstellar shoots for the Moon, Mars, and more. https://www.designboom.com/architecture/interstellar-lab-self-sustainable-space-pods-dassault-systemes-02-17-2023/
  • [53] Savage, N. (2017, December 27). To build settlements on Mars, we’ll need materials chemistry. Chemical & Engineering News. https://cen.acs.org/articles/96/i1/build-settlements-Mars-ll-need.html
  • [54] Wan, L., Wendner, R., & Cusatis, G. (2016). A novel material for in situ construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222–231. https://doi.org/10.1016/j.conbuildmat.2016.05.046
  • [55] Esmaeil, N., Gharagozloo, M., Rezaei, A., & Grunig, G. (2014). Dust events, pulmonary diseases and immune system. American Journal of Clinical and Experimental Immunology, 3(1), 20–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960758/
  • [56] Bier, H., Vermeer, E., Hidding, A., & Jani, K. (2021). Design-to-Robotic-Production of Underground Habitats on Mars. SPOOL, 8(2), 31–38. https://doi.org/10.7480/spool.2021.2.6075
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-66b0699b-ff10-4e64-9af6-b42bef1d0c6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.