Czasopismo
2024
|
Vol. 191, nr 1
|
17--67
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
An integral quadratic form q is usually identified with a bilinear form b such that its Gram matrix with respect to the canonical basis is upper triangular. Two integral quadratic forms are called strongly (resp. weakly) Gram congruent if their corresponding upper triangular bilinear forms (resp. their symmetrizations) are equivalent. If q is unitary, such upper triangular bilinear form is unimodular, and one considers the associated Coxeter transformation and its characteristic polynomial, the so-called Coxeter polynomial of q with this identification. Two strongly Gram congruent quadratic unit forms are weakly Gram congruent and have the same Coxeter polynomial. Here we show that the converse of this statement holds for the connected non-negative case of Dynkin type A_r and arbitrary corank, and use this characterization to complete a combinatorial classification of such quadratic forms started in [Fundamenta Informaticae 184(1):49-82, 2021] and [Fundamenta Informaticae 185(3):221-246, 2022].
Czasopismo
Rocznik
Tom
Strony
17--67
Opis fizyczny
Bibliogr. 74 poz.
Twórcy
- Instituto de Matemáticas UNAM, Mexico, jejim@im.unam.mx
Bibliografia
- [1] Arndt J, Matters Computational: Ideas, Algorithms, Source Code, Springer 2011. doi:10.1007/978-3-642-14764-7.
- [2] Barot M. A characterization of positive unit forms, Bol. Soc. Mat. Mexicana (3), 1999. Vol. 5, pp. 87–93.
- [3] Barot M. A characterization of positive unit forms, II, Bol. Soc. Mat. Mexicana (3), 2001. Vol. 7, pp. 13–22.
- [4] Barot M, Geiss C, and Zelevinsky A. Cluster algebras of finite type and positive symmetrizable matrices. J. London Math. Soc., 2006. 73:545–564. doi:10.1112/S0024610706022769.
- [5] Barot M, Jiménez González JA, and de la Peña JA. Quadratic Forms: Combinatorics and Numerical Results, Algebra and Applications, Vol. 25 Springer Nature Switzerland AG 2018. doi:10.1007/978-3-030-05627-8.
- [6] Barot M, and de la Peña JA. The Dynkin type of a non-negative unit form, Expo. Math. 1999. 17:339–348.
- [7] Barot M, and de la Peña JA. Algebras whose Euler form is non-negative, Colloquium Mathematicum 1999. 79:119–131. doi:10.4064/cm-79-1-119-131.
- [8] Barot M, and de la Peña JA. Root-induced integral quadratic forms, Linear Algebra Appl. 2006. 412:291–302. doi:10.1016/j.laa.2005.06.030.
- [9] Bernstein IN, and Gelfand IM, and Ponomarev VA. Coxeter functors and Gabriel’s theorem, Russian Math. Surveys 1973. 28:17–32.
- [10] Bocian R, Felisiak M, and Simson D. On Coxeter Type Classification of Loop-Free Edge-Bipartite Graphs and Matrix Morsifications, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013. pp. 115–118. doi:10.1109/SYNASC.2013.22.
- [11] Bocian R, Felisiak M, and Simson D. Numeric and mesh algorithms for the Coxeter spectral study of positive edge-bipartite graphs and their isotropy groups. Journal of Computational and Applied Mathematics 2014. 259:815–827. doi:10.1016/j.cam.2013.07.013.
- [12] Bongartz K. Algebras and quadratic forms. J. London Math. Soc. (2), 1983. 28(3):461–469.
- [13] Bongartz K. Quadratic forms and finite representation type. In: Malliavin MP. (eds) Séminaire d’Algébre Paul Dubreil et Marie-Paule Malliavin. Lecture Notes in Mathematics, 2006. vol. 1146. Springer, Berlin, Heidelberg. doi:10.1007/BFb0074545.
- [14] Brüstle T, de la Peña JA, and Skowroński A. Tame algebras and Tits quadratic forms, Advances in Mathematics 2011. 226:887–951. doi:10.1016/j.aim.2010.07.007.
- [15] Cameron PJ, Goethals JM, Seidel JJ, and Shult EE. Line graphs, Root Systems, and Elliptic Geometry, J. Algebra 1976. 43:305–327. doi:10.1016/0021-8693(76)90162-9.
- [16] Dean A, and de la Peña JA. Algorithms for weakly nonnegative quadratic forms, Linear Algebra Appl. 1996. 235:35–46. doi:10.1016/0024-3795(94)00109-X.
- [17] Dlab V, and Ringel CM. Indecomposable representations of graphs and algebras. Memoirs AMS 1976. Vol. 6, 173. doi:10.1090/memo/0173.
- [18] Dlab V, and Ringel CM. A module theoretical interpretation of properties of the root systems. Proc. Conf. on Ring Theory (Antwerp, 1978), Marcel Dekker (1979).
- [19] Dräxler P, and de la Peña JA. The homological quadratic form of a biextension algebra. Archiv der Mathematik 1999. 72:9–21. doi:10.1007/s000130050297.
- [20] Dräxler P, and de la Peña JA. Tree algebras with non-negative Tits form. Communications in Algebra 2000. 28(8):3993–4012. doi:10.1080/00927870008827071.
- [21] Dräxler, Drozd YA, Golovachtshuc NS, Ovsienko SA, and Zeldych MM. Towards the classification of sincere weakly positive unit forms. European Journal of Combinatorics 1995. 16(1):1–16. doi:10.1016/0195-6698(95)90084-5.
- [22] Felisiak M, and Simson D. Applications of matrix morsifications to Coxeter spectral study of loop-free edge-bipartite graphs, Discrete Applied Mathematics 10 September 2015. 192:49–64. doi:10.1016/j.dam.2014.05.002.
- [23] Gabriel P. Unzerlegbare Darstellungen I, Man. Math., 1972. 6:71–103. doi:10.1007/BF01298413.
- [24] Gantmacher FR. The Theory of Matrices, Vols. 1 and 2, Chelsea Publishing Company, New York, N.Y. 1960. ISBN:978-0-8218-1376-8, 10:0821813935, 13:978-0821813935.
- [25] G ˛asiorek M, Simson D, and Zaj ˛ac K. Algorithmic computation of principal posets using Maple and Python. Algebra and Discrete Math. 2014. 17:33–69. URL. http://dspace.nbuv.gov.ua/handle/123456789/152339.
- [26] G ˛asiorek M, Simson D, and Zaj ˛ac K. A Gram classification of non-negative corank-two loop-free edge-bipartite graphs. Linear Algebra Appl. 2016. 500:88–118. doi:10.1016/j.laa.2016.03.007.
- [27] Happel D. The converse of Drozd’s theorem on quadratic forms, Communications in Algebra 1995. 23(2):737–738. doi:10.1080/00927879508825243.
- [28] von Höhne H-J. On weakly positive unit forms, Comment. Math. Helvetici 1988. 63:312–336. doi:10.1007/BF02566771.
- [29] von Höhne H-J. Edge reduction for unit forms, Archiv der Mathematik, Vol. 1995. 65:300–302. doi:10.1007/BF01195540.
- [30] von Höhne H-J. On weakly non-negative unit forms and tame algebras, Proc. London Math. Soc. (3) 1996. 73:47–67. doi:10.1112/plms/s3-73.1.47.
- [31] Horn RA, and Sergeichuk VV. Congruences of a square matrix and its transpose, Linear Algebra Appl. 2004. 389:347–353. doi:10.1016/j.laa.2004.03.010.
- [32] Jiménez González JA. Incidence graphs and non-negative integral quadratic forms. Journal of Algebra 2018. 513:208–245. doi:10.1016/j.jalgebra.2018.07.020.
- [33] Jiménez González JA. A graph theoretical framework for the strong Gram classification of non-negative unit forms of Dynkin type An. Fundamenta Informaticae 2012. 184(1):49–82. doi:10.3233/FI-2021-2092.
- [34] Jiménez González JA. Coxeter invariants for non-negative unit forms of Dynkin type Ar . Fundamenta Informaticae 2022. 185(3):221–246. doi:10.3233/FI-222109.
- [35] Kasjan S, and Simson D. Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems. Fundamenta Informaticae 2015. 139(2):153–184. doi:10.3233/FI-2015-1230.
- [36] Kasjan S, and Simson D. Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, II. Application to Coxeter spectral analysis. Fundamenta Informaticae 2015. 139:185–209. doi:10.3233/FI-2015-1231.
- [37] Kosakowska J. Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fundamenta Informaticae 2012. 119(2):149–162. doi:10.3233/FI-2012-731.
- [38] Lenzing H. A K-theoretical study of canonical algebras. In: R. Bautista, et al. (Eds.), Representations of Algebras, Seventh International Conference, Cocoyoc, Mexico, 1994, in: CMS Conf. Proc., American Mathematical Society, Providence, RI. 1996. vol. 18, pp. 433–454.
- [39] Lenzing H, and Reiten I. Hereditary noetherian categories of positive Euler characteristic. Math. Z. 2006. 254:133–171. doi:10.1007/s00209-006-0938-6.
- [40] Makuracki B, and Mróz A. Root systems and inflations of non-negative quasi-Cartan matrices, Linear Algebra Appl. 2019. 580:128–165. doi:10.1016/j.laa.2019.06.006.
- [41] Makuracki B, and Mróz, A. Coefficients of non-negative quasi-Cartan matrices, their symmetrizers and Gram matrices, Discrete Applied Mathematics 2021. 303:108–121. doi:10.1016/j.dam.2020.05.022.
- [42] Makuracki B, and Simson, D. A Gram classification of principal Cox-regular edge-bipartite graphs via inflation algorithm, Discrete Applied Mathematics 253, 25–36 (2019)
- [43] Makuracki B, Simson D, and Zyglarski B. Inflation algorithm for Cox-regular positive edge-bipartite graphs with loops, Fundamenta Informaticae 2017. 153(4):367–398. doi:10.3233/FI-2017-1545.
- [44] Mróz A. Congruences of edge-bipartite graphs with applications to Grothendieck group recognition I. Inflation algorithm revisited, Fundamenta Informaticae 2016. 146(2):121–144. doi:10.3233/FI-2016-1377.
- [45] Mróz A. Congruences of edge-bipartite graphs with applications to Grothendieck group recognition II.Coxeter type study, Fundamenta Informaticae 2016. 146(2):145–177. doi:10.3233/FI-2016-1378.
- [46] Mróz A, and de la Peña JA. Tubes in derived categories and cyclotomic factors of the Coxeter polynomial of an algebra, Journal of Algebra 2014. 420:242–260. doi:10.1016/j.jalgebra.2014.08.017.
- [47] Mróz A, and de la Peña JA. Periodicity in bilinear lattices and the Coxeter formalism, Linear Algebra Appl. 2016. 493:227–260. doi:10.1016/j.laa.2015.11.021.
- [48] Newman M. Integral matrices, Academic Press 1972. ISBN:0080873588, 9780080873589.
- [49] Ovsienko SA. Integral weakly positive forms, in Schur matrix problems and quadratic forms, Inst. Mat. Akad. Nauk. Ukr. S.S.R., Inst. Mat. Kiev (in Russian), 1979. pp. 106–126.
- [50] de la Peña JA. Algebras with hypercritical Tits form. Topics in Algebra, Banach Center Publications, PWN-Polish Scientific Publishers, Warsaw, 1990. 26(1):353–369.
- [51] de la Peña JA. Quadratic forms and the representation type of an algebra. Engänzungsreihe 90–103. Bielefeld 1990.
- [52] Perez C, Abarca M, and Rivera D. Cubic algorithm to compute the Dynkin type of positive definite quasi-Cartan matrices, Fundamenta Informaticae 2018. 158(4):369–384. doi:10.3233/FI-2018-1653.
- [53] Ringel CM. Tame algebras and integral quadratic forms, Springer LNM, 1984. vol. 1099. doi:10.1007/BFb0072870.
- [54] Rotman JJ. A first course in abstract algebra with applications, 3rd Ed., Upper Saddle River, New Jersey 07458, Pearson Prentice Hall 2006. ISBN-10:0201763907, 13:978-0201763904.
- [55] Sato M. Periodic Coxeter matrices and their associated quadratic forms. Linear Algebra Appl. 2005. 406:99–108. doi:10.1016/j.laa.2005.03.036.
- [56] Simson D. Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots. Fundamenta Informaticae 2011. 109(4):425–462. doi:10.3233/FI-2011-520.
- [57] Simson D. Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebras 2011. 215(1):13–34. doi:10.1016/j.jpaa.2010.02.029.
- [58] Simson D. Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fundamenta Informaticae 2013. 123(4):447–490. doi:10.3233/FI-2013-820.
- [59] Simson D. A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fundamenta Informaticae 2013. 124(3):309–338. doi:10.3233/FI-2013-836.
- [60] Simson, D. Toroidal algorithms for mesh geometries for Root orbits of the Dynkin diagram D4, Fundamenta Informaticae 2013. 124(3):339–364. doi:10.3233/FI-2013-837.
- [61] Simson D. A Coxeter Gram classification of positive simply laced edge-bipartite graphs. SIAM J. Discrete Math., 2013. 27:827–854. doi:10.1137/110843721.
- [62] Simson D. Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs I. A Gram classification. Fundamenta Informaticae 2016. 145(1):19–48. doi:10.3233/FI-2016-1345.
- [63] Simson D. Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs II. Isotropy mini-groups. Fundamenta Informaticae 2016. 145(1):49–80. doi:10.3233/FI-2016-1346.
- [64] Simson D. A Coxeter spectral classification of positive edge-bipartite graphs I. Dynkin types Bn, Cn, F4, G2, E6, E7, E8. Linear Algebra Appl. 2018. 557:105–133. doi:0.1016/j.laa.2018.07.013.
- [65] Simson D. Symbolic computations of strong Gram congruences for positive Cox-regular edge-bipartite graphs with loops, Linear Algebra Appl., 2019. 557:90–143. doi:10.1016/j.laa.2019.02.023.
- [66] Simson D. A computational technique in Coxeter spectral study of symmetrizable integer Cartan matrices. Linear Algebra Appl., 2020. 586:190–238. doi:10.1016/j.laa.2019.10.015.
- [67] Simson D. A Coxeter spectral classification of positive edge-bipartite graphs II. Dynkin type Dn. Linear Algebra Appl. 2021. 612:223–272. doi:10.1016/j.laa.2020.11.001.
- [68] Simson D. Weyl orbits of matrix morsifications and a Coxeter spectral classification of positive signed graphs and quasi-Cartan matrices of Dynkin type An. Advances in Mathematics 404, 108389 (2022).
- [69] Simson D, and Zaj ˛ac K. A Framework for Coxeter Spectral Classification of Finite Posets and Their Mesh Geometries of Roots, Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Vol. 2013, Article ID: 743734, 22 pages.
- [70] Simson D, and Zaj ˛ac K. Inflation algorithm for loop-free non-negative edge-bipartite graphs of corank at least two, Linear Algebra Appl. 2017. 524, 109–152. doi:10.1016/j.laa.2017.02.021.
- [71] Sloane NJA. The On-Line Encyclopedia of Integer Sequences, (2009). URL: http://oeis.org/classic/?blank=1.
- [72] Veblen O, and Franklin P. On matrices whose elements are integers. Annals of Mathematics, Second Series, 1921. 23:(1):1–15. doi:10.2307/1967777.
- [73] Zaslavsky T. The geometry of root systems and signed graphs, Amer. Math. Monthly 1981. 88(2):88–105. doi:10.2307/2321133.
- [74] Zaslavsky T. Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications: Mysore, 2008, in Ramanujan Math. Soc. Lect. Notes Ser., Vol. 13, Ramanujan Math. Soc., Mysore, 2010, pp. 207–229. doi:10.48550/arXiv.1303.3083.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-65e79b51-372c-4b09-a9a6-35f931516862