Czasopismo
2017
|
Vol. 17, no. 2
|
188--198
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Toxicological research on the influence of noxious nanoparticles on human health indicates the need to develop efficient protective devices. In particular, this concerns respiratory protective equipment employing filtration nonwovens. This paper presents a methodology for the improvement of the filtration efficiency of electret nonwovens against nanoparticles by enriching amorphous polycarbonate (PC) with additives of different electrostatic potentials. We introduced perlite granules (positive charge) and amber granules (negative charge) to the polymer stream in melt-blown technology. Filtration efficiency was assessed by a standard method using paraffin oil and sodium chloride aerosol, as well as by a non-standard method using NaCl nanoparticles. The experiments showed that strengthening the effects of electrostatic forces by the introduction of modifiers is a promising approach to improving the efficiency of electret nonwovens against nanoparticles.
Czasopismo
Rocznik
Tom
Strony
188--198
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Central Institute for Labour Protection – National Research Institute Department of Personal Protective Equipment, Warsaw, Poland tel.: +48 42 648 02 25; fax.+48 42 678 19 15, agbro@ciop.lodz.pl
Bibliografia
- [1] Savolainen K., Backman U., Brouwer D., Fadeel B., Fernandes T., Kuhlbusch T., Landsiedel R., Lynch I., Pylkkanen L.(2013), Nanosafety in Europe 2015-2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations, EDITA, Helsinki 2013, ISBN 978-952-261-310-3.
- [2] Linkov I. et al.(2009), Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop, Journal of Nanoparticle Research 11 (2009) 513-527.
- [3] Warheit D.B., Sayes Ch.M., Reed K.L., Swain K.A.(2008), Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks, Pharmacology and therapeutics, 120,35-42, 2008.
- [4] Brouwer D., Van Duuren-Stuurman B., Berges M., Jankowska E., Bard D., Mark D.(2009), From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res. 2009;11(8):1867-1881. DOI 10.1007/s11051-009-9772-1.
- [5] Friedrichs S., Schulte J. (2007), Environmental, health and safety aspects of nanotechnology implications for the R&D in (small) companies, Science and Technology of Advanced Materials 8 (2007) 12-18.
- [6] Hoyt V. W., Mason E.(2008), Nanotechnology: emerging health issues, Journal of Chemical Health & Safety (III/IV 2008) 10-15.
- [7] Podgórski A., Balazy A., Gradoń L. (2006), Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters, Chem. Eng. Sci. 61:6804-6815.
- [8] Gradoń L., Podgórski A., Balazy A. (2005), Filtration of Nanoparticles in the Nanofibrous filters. FILTECH EUROPA 2005 - Conference Proceedings, Wiesbaden, Germany, vol. II, 178-185.
- [9] Brochocka A. (2001), Characteristics of melt-blown filter materials produced by simultaneous blowing of polymer melt from two extruders, Fibres & Textiles in Eastern Europe, 66-69.
- [10] Brochocka A., Makowski K., Majchrzycka K.(2012), Penetration of different nanoparticles through melt-blown filter media used for respiratory protective devices, Textile Research Journal, Vol.82(18), 1906-919
- [11] Yang W., Peters J.I., Williams R.O. III (2008), Inhaled nanoparticles - A current review, International Journal of Pharmaceutics 356: 239-247.
- [12] Brochocka A., Majchrzycka K., Makowski K., Grzybowski P. (2013), Efficiency of Filtering Materials Used in Repiratory Protective Devices Against Nanoparticles, JOSE 2013, Vol.19 No. 2, 285-295.
- [13] Kim S.Ch., Harrington M.S., Pui D.Y.H. (2007), Experimental study of nanoparticles penetration through commercial filter media, Journal of Nanoparticle Research 9, 117-125.
- [14] Brochocka A., Ruszkowski K.(2000), Some aspects of manufactiring electret nonwoven filters by a conventional method with utilisation of the triboelectric effect - Fibres and Textiles in Eastern Europe, July/September 2000, No. 3, Vol.8, 69-72.
- [15] Fjeld R.A., Ownes T.M.(1998), The Effect of Particle Charge on Penetration in an Electret Filter, IEEE Transactions on Industry Applications, Vol. 24, No 4, 1988, 725-731.
- [16] Tsai P.P., Wadsworth Larry C.(1995), Electrostatic Charging of Melt Blown Webs for High-Efficiency Air Filters, in: Advances in Filtration and Separation Technology, American Filtration and Separation Society, Vol.9, 473, 1995.
- [17] Tsai P.P., Wadsworth Larry C.(1996), Effect of Polymer Properties on the Electrostatic Charging of Different Media Structures for Air Filters, Conference Proceedings, SPE, ANTEC 96, Indianapolis, 3642.
- [18] Tsai P.P., Schreuder-Gibson H., Gibson P. (2002) Different Electrostatic Methods for Making Electret Filters, Journal of Electrostatics, 54, 2002, 333-341.
- [19] Brown, R. C., Wake, D., Gray, R., Blackford, D. B., i Bostock, G. J. (1988), Effect of industrial aerosols on the performance of electrically charged filter material. Ann Occup Hyg, 32 (3), strony 271-294.
- [20] Wang, C. S. (2001),. Electrostatic forces in fibrous filters - a review. Powder Technology, 118 (1-2), strony 166-170.
- [21] Ramakrishna, S., Fujihara, K., i Teo, W.E. (2005), An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Pte Ltd.
- [22] Krucińska, I. (2001). The influence of technological parameters on the filtration efficiency of electret needled non-woven fabrics. Journal of Electrostatics, 56 (2), strony 143-153.
- [23] Urbaniak-Domagała W., Wrzosek H., Szymanowski H., Majchrzycka K., Brochocka A.(2010) Plasma Modification of Filter Nonwovens Used for the Protection of Respiratory Tracts, Fibres & Textiles In Eastern Europe 2010; Vol. 18, No 6(83); 94-99.
- [24] Gui-qiu Ma, Jing-jiang Zhai, Ben Liu, Ding-hai Huang, Jing Sheng (2012) Plasma modification of polypropylene surface and grafting copolimerization of styrene onto polypropylene , Chinese Journal of Polymer Science, Vol.30, No.3, 2012, 423-435.
- [25] Brochocka A., Majchrzycka K. (2009) Technology for the Production of Bioactive Melt-Blown Filtration Materials Applied to Respiratory Protective Devices. Fibres & Textiles in Eastern Europe. 2009;17(5): 2-98.
- [26] Stephen B. Martin Jr, Ernest S. Moyer. 2000. Electrostatic Respirator Filter Media: Filter Efficiency and Most Penetrating Particle Size Effects. Applied Occupational and Environmental Hygiene, Vol. 15:(8) 609-617;
- [27] Huang H.L., Wang D.M., Kao S.T., Yang S., Huang Y.Ch. 2007. Removal of monodisperse liquid aerosols by using the polysulfone membrane filters. Separation and Purification Technology 54:96-103
- [28] Brochocka A., Majchrzycka K., Makowski K. (2013) Modified Melt-Blown Nonwovens for Respiratory Protective Devices Against Nanoparticles - Fibres and Textiles in Eastern Europe 2013, 21, 49(100), 106-111.
- [29] Donnald G. Legrand, John T.Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker, New York, NY 10016, 2000
- [30] Rengasamy S., Miller A., Vo E., Eimer B. C. 2013. Filter Performance Degradation of Electrostatic N95 and P100 Filtering Facepiece Respirators by Dioctyl Phthalate Aerosol Loading. Journal of Engineered Fibers and Fabrics, Volume 8, (3 ): 62-69);
- [31] Patent. Poland, No. 212 2007, (2011).
- [32] Standard EN 13274-7: 2008 Respiratory protective devices. Methods of test. Part 7: Determination of particle filter penetration.
- [33] Standard EN 13274-3:2001 Respiratory protective devices. Methods of test. Part 3: Determination of breathing resistance.
- [34] Krucińska I., Strzembosz W., Majchrzycka K., Brochocka A., Sulak K., Biodegradable Particle Filtering Half-masks for Respiratory Protection, FIBRES & TEXTILES in Eastern Europe 2012; 20, 6B(96): 77-83.
- [35] Brochocka A., Makowski K., Filtering half masks for respiratory protection against nanoparticles - containing aerosols, Chemical Industry, 93/1/2014: 93-98.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-659f433c-ee2d-4c64-8384-5e6bdc0d026c