Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Tom 26 | 707--715
Tytuł artykułu

Sustainable Aviation Fuels as the Path to Carbon Neutrality in Air Transport

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper delves into the evolving landscape of the aviation industry, focusing on Sustainable Aviation Fuels (SAF) as a potential solution to mitigate the environmental impact of air transport. With the aviation sector playing a pivotal role in global connectivity, its growth is shadowed by significant environmental challenges, notably high levels of carbon dioxide emissions and other greenhouse gases. Traditional aviation fuels, largely based on petroleum, are the primary contributors to these emissions, presenting a clear imperative for alternative solutions. This study explores the viability and environmental benefits of SAFs, produced from diverse renewable sources such as biomass, agricultural waste, and solar energy, which can seamlessly integrate into existing aviation infrastructure. The research highlights the technical, economic, and regulatory challenges in transitioning to SAFs while emphasizing their potential to significantly reduce carbon emissions without necessitating major modifications to aircraft technologies. The paper provides a comprehensive analysis of current technologies, production methods, and the market viability of SAFs, including their economic implications in the context of fluctuating oil prices and the industry's drive towards carbon neutrality. By examining the lifecycle emissions and sustainability of various SAFs, this paper contributes to the ongoing discourse on reducing the aviation sector's carbon footprint and enhancing its sustainability profile.
Wydawca

Rocznik
Tom
Strony
707--715
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Faculty of Management, Department of Logistics, University of Business and Administration in Gdynia, Poland
Bibliografia
  • Ballal, V. et al. (2023). Climate change impacts of e-fuels for aviation in Europe under present-day conditions and future policy scenarios. Fuel, 338, 2-8.
  • Chamier-Gliszczynski, N., Krzyzynski, T. (2005). On modelling three-stage system of receipt and automotive recycling. REWAS'04, Global Symposium on Recycling, Waste Treatment and Clean Technology. 2005, 2813-2814, Madrid, Spain, 26-29 September 2004, Conference Paper, ISBN: 8495520060.
  • Chamier-Gliszczynski, N., Dyczkowska, J., Woźniak, W., Olkiewicz, M., Stryjski, R. (2024). The Determinant of Time in the Logistical Process of Wind Farm Planning. Energies, 17(6), 1293. https://doi.org/10.3390/en17061293
  • Davies, S.J. et al. (2018). Net-Zero Emissions Energy Systems. Science, 360, 6396. https://www.science.org/doi/10.1126/science.aas9793
  • Douglas, C., James, B. (2022). The state of: electrofuels for aviation. World Fund, 5-7.
  • Dyczkowska, J., Chamier-Gliszczynski, N., Woźniak, W., Stryjski, R. (2024). Management of the Fuel Supply Chain and Energy Security in Poland. Energies, 17(22), 5555. https://doi.org/10.3390/en17225555
  • Falk, M.T., Hagsten, E. (2021). Determinants of CO2 emissions generated by air travel vary across reasons for the trip. Environ Sci Pollut Res Int., 22969-22980.
  • Glantz, P. Noone, K. (2020). Aviation, climate, and the "high altitude" effect (2020). Bolin Centre for Climate Research, Stockholms Universitet, 2-3.
  • Główka, M. (2024). Sustainable aviation fuel – Comprehensive study on highly selective isomerization route towards HEFA based bioadditives. Renewable Energy, 220, 1-3.
  • Goldmann, A., Sauter, W., Oettinger, M., Kluge, T., Schröder, U., Seume, J.R., Friedrichs, J., Dinkelacker, F. (2018). Study on Electrofuels in Aviation. Energies, 11, 3-7.
  • Kim, J., Miller, J.A., Johnson, T., Stechel, E., Maravelias, C.T. (2012). Fuel Production from CO2 Using Solar-Thermal Energy: System Level Analysis. Energy and Environmental Science, 5(9), 8417-8429.
  • Kłodawski, M., Jachimowski, R., Chamier-Gliszczyński, N. (2024). Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs. Energies, 17(5), 985. https://doi.org/10.3390/en17050985
  • Lenort, R., Baran, J., Wysokinski, M., Golasa, P., Bienkowska-Golasa, W., Golonko, M., Chamier-Gliszczynski, N. (2019). Economic and Environmental Efficiency of the Chemical Industry in Europe in 2010-2016. Rocznik Ochrona Srodowiska, 21(2), 1393-1404.
  • Maćkowiak, A., Kostrzewski, M., Bugała, A., Chamier-Gliszczyński, N., Bugała, D., Jajczyk, J., Woźniak, W., Dombek, G., Nowak, K. (2023). Investigation into the Flow of Gas-Solids during Dry Dust Collectors Exploitation, as Applied in Domestic Energy Facilities – Numerical Analyses. Eksploatacja i Niezawodnosc, 25(4), 174095, https://doi.org/10.17531/ein/174095
  • Meurer, A., Jochem, P., Kern, J. (2023). Implications and trade-offs of a targeted small-scale production of sustainable aviation fuel based on Fischer–Tropsch synthesis. Sustainable Energy & Fuels. 752-753.
  • Rodrigue, J.P. (2024). The Geography of Transport Systems. 6th ed. New York Routledge: 2006-2007.
  • Saynor, B., Bauen, A., Matthew, L. (2003). The potential for renewable energy sources in aviation. Imperial College Centre for Energy Policy and Technology: 35-44.
  • Szyc, R. (2024). Innovations in Air Transport. In: Wojewódzka-Król, K. Innovations in Transport. Warsaw, PWN. (in Polish). https://doi.org/10.53271/2023.178
  • Voß, S., Bube, S., Kaltschmitt, M. (2023). Aviation fuel production pathways from lignocellulosic biomass via alcohol intermediates – A technical analysis. Fuel Communications, 17, 2-3.
  • Walter, J. (2022). SAF Aviation Fuel: The dream of Emission-Free flying. DW, https://www.dw.com/pl/zr%C3%B3wnowa%C5%BCone-paliwo-lotnicze-saf-marzenie-o-bezemisyjnym-lataniu/a-63345791 (21.03.2024) (in Polish).
  • Wang, L., Xia, M., Wang, H., Huang, K., Qian, C., Maravelias, C.T., Ozin, G.A. (2018). Greening Ammonia: Toward the Solar Ammonia Refinery. Joule, 2, 1055-1074.
  • Zoller, S. (2022). A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2. Joule, 6(7), 1605-1607.
  • Alternative Fuels Used for Aviation. European Alternative Fuels Observatory. (access: 19.04.2024). https://alternative-fuels-observatory.ec.europa.eu/transport-mode/aviation/alternative-fuels-for-aviation
  • International Air Transport Association (IATA) (2021). SAF – Sustainability Considerations, Sustainable Aviation Fuels, IATA, 2-3. (access: 26.03.2024).
  • https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/saf-and-sustainability.pdf
  • International Air Transport Association (IATA) (2021). Resolution on the industry's commitment to reach net zero carbon emissions by 2050. (access: 20.04.2024). https://www.iata.org/en/pressroom/2021-releases/2021-10-04-03/
  • International Air Transport Association (IATA). Sustainable aviation fuel output increases, but volumes still low. (2023). (access: 26.04.2024). https://www.iata.org/en/iata-repository/publications/economic-reports/sustainable-aviation-fuel-output-increases-but-volumes-still-low/Synhelion company, https://synhelion.com/technology [access: 20.03.2024].
  • US Department of Energy, Bioenergy Technologies Office. Sustainable Aviation Fuels. (access: 10.04.2024). https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuels
  • What Is SAF?, IATA, (access: 10.04.2024). https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/saf-what-is-saf.pdf
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-65922ae8-5944-4b0f-9903-9f004399ff58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.