Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, no. 2 | art. no. 185371
Tytuł artykułu

Defect categorization of ribbon blender worm gearbox worm wheel and bearing based on artificial neural network

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a demand for worm gearboxes in diversified industrial fields that include machinery such as escalators, ribbon blenders, pulverisers, bowl mills, etc. because of their peculiar characteristics like torque and quick retardation. The most commonly occurring defects in a worm gear box are scratches that develop in the worm gear and in bearings. Early defect categorization is required to prevent a sudden breakdown that would decrease production. The defect is depicted in different cases, which include defects in the gear tooth and the outer and inner races of the bearing. In another case, the defect is considered in the gear tooth as well as the bearing. The severity is designated using the ANN. The experiments were performed under these conditions with a good worm gearbox to capture vibration response signatures. Using these values as an input to the ANN, the model is trained. Experimental results show that vibration amplitude increases with fault progression in the worm gearbox, and the trained ANN model effectively categorizes worm gearbox faults with an accuracy of 97.12%.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. 185371
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Bramha Valley College of Engineering and Research Institute, India, ghongade@gmail.com
  • Department of Computer Engineering, Brahma Valley College of Engineering and ResearchInstitute, India, anjalibhadre38@gmail.com
Bibliografia
  • 1. Dhamande L S, Chaudhari M B. Compound gear-bearing fault feature extraction using statistical features based on time-frequency method, Measurement2018; (125): 63–77. https://doi.org/10.1016/j.measurement.2018.04.059
  • 2. Ammar D M, Oraby S E, Younes M A, Elsayed S. E. Prediction of bearing service life using an auto regression moving average and response surface methodology, Applications of Modelling and Simulation 2022; (6): 1-9, http://arqiipubl.com/ojs/index.php/AMS_Journal/article/view/324/128
  • 3. Tang X, Xu Y, Sun X, Liu Y, Jia Y, Gu F, Ball A D. Intelligent fault diagnosis of helical gearboxes with compressive sensing based non-contact measurements, ISA Transactions 2022; (20): 1-16, https://doi.org/10.1016/j.isatra.2022.07.020
  • 4. Chen Z, Cen J, Xiong J. Rolling bearing fault diagnosis using time-frequency analysis and deep transfer convolutional neural network, Access 2020; (8): 150248-150261, https://ieeexplore.ieee.org/document/9167237, https://doi.org/10.1109/ACCESS.2020.3016888
  • 5. Alshammari S A M, Makrahy M M, Ghazaly N M. Fault diagnosis of helical gear through various vibration techniques in automotive gearbox, Journal of Mechanical Design and Vibration 2019; (7): 21-26, http://www.sciepub.com/JMDV/abstract/10727
  • 6. Sharma V. A review on vibration-based fault diagnosis techniques for wind turbine gearboxes operating under nonstationary conditions, J. Inst. Eng. India Ser. C 2021; (102): 507–523. https://link.springer.com/article/10.1007/s40032-021-00666-y
  • 7. Teng W, Ding X, Cheng H, Han C, Liu Y, Mu H. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform, Renewable Energy 2019; (136), 393-402, https://doi.org/10.1016/j.renene.2018.12.094
  • 8. Chen A, Kurfess T R. A new model for rolling element bearing defect size estimation. Measurement,2018; (114): 144-149, https://doi.org/10.1016/j.measurement.2017.09.018.
  • 9. Goyal D, Choudhary A, Sandhu J K, SrivastavaP, SaxenaK K. An intelligent self-adaptive bearing fault diagnosis approach based on improved local mean decomposition, Int J Interact Des Manuf2022; (72), https://doi.org/10.1007/s12008-022-01001-0
  • 10. Miao F, Zhao R., Wang X. A new method of denoising of vibration signal and its application, Shock and Vibration, 2020; (2): 1-8, https://doi.org/10.1155/2020/7587840
  • 11. Liu Z, Zhang L, Carrasco J. Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method, Renewable Energy 2020; (146)P: 99-110, https://doi.org/10.1016/j.renene.2019.06.094
  • 12. Miao F, Zhao R. A new fault diagnosis method for rotating machinerybased on SCA-FastICA, Shock and Vibration, 2020; (2): 1-12. https://doi.org/10.1155/2020/6576915.
  • 13. Xu A, Huang W, Li P, Chen H, Meng J, Guo X. Mechanical vibration signal denoising using quantum-inspired standard deviation based on subband based gaussian mixture model, Shock and Vibration 2018; 1-9, https://doi.org/10.1155/2018/5169070.
  • 14. Mishra C, Samantaray A K, Chakraborty G. Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising, Measurement 2017; (103): 77-86, https://doi.org/10.1016/j.measurement.2017.02.033
  • 15. Hizarci B, Umutlu R C, Kiral Z, Ozturk H. Vibration region analysis for condition monitoring of gearboxes using image processing and neural networks. Experimental Techniques, 2019; (43): 739-755, https://doi.org/10.1007/s40799-019-00329-9
  • 16. Karabacak Y E, Ozmen N G, Gumusel L. Worm gear condition monitoring and fault detection from thermal images via deep learning method. Maintenance and Reliability, 2020; (22): 544–556, http://dx.doi.org/10.17531/ein.2020.3.18
  • 17. Babu T N, Patel D, Tharnari D, Bhatt A. Temperature behavior-based monitoring of worm gears under different working conditions, Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering 2019; (2): 257-265, DOI:10.1007/978-981-13-2718-6_24
  • 18. Chothani H G, Maniya K D. Experimental investigation of churning power loss of single start worm gear drive through optimization technique, Materials Today Proceedings 2020; (28) 2031-2038, https://doi.org/10.1016/j.matpr.2019.12.365
  • 19. Hizarci B, Umutlu R C, Kiral Z, Ozturk H. Fault severity detection of a worm gearbox based on several feature extraction methods through a developed condition monitoring system, SN Applied Sciences 2021; 3(1): 129-140, https:// DOI:10.1007/s42452-020-04131-w
  • 20. Elforjani M, Mba D, Muhammad A, Sire A. Condition monitoring of worm gears, Applied Acoustics 2012; (73): 859–863, https://doi.org/10.1016/j.apacoust.2012.03.008
  • 21. Elasha F, Cárcel C R, Mba D, Kiat G, Nze I, Yebra G. Pitting detection in worm gearboxes with vibration analysis, Engineering Failure Analysis 2014; (42): 366-376, https:// DOI:10.1016/j.engfailanal.2014.04.028.
  • 22. Umutlu R C, Hizarci B, Kiral Z, Ozturk H. Classification of pitting fault levels in a worm gearbox using vibration visualization and ANN, Sadhana Academy Proceedings in Engineering Sciences 2020; (45): 1-13, https:// doi.org/10.1007/s12046-019-1263
  • 23. Tyagi S, Panigrahi S K. An SVM—ANN hybrid classifier for diagnosis of gear fault, Applied Artificial Intelligence 2017; (31): 209-231. https://doi.org/10.1080/08839514.2017.1315502
  • 24. Barshikar R R, Baviskar P R. Evaluation of performance of vibration signatures for condition monitoring of worm gearbox by using ANN, International Journal on Interactive Design and Manufacturing 2023; (62): 1-14, https://doi.org/10.1007/s12008-023-01268-x
  • 25. Agrawal P, Jayaswal P. Diagnosis and classifications of bearing faults using artificial neural network and support vector machine, J. Inst. Eng. India Ser. C, 2019; (101): 61–72, https://doi.org/10.1007/s40032-019-00519-9
  • 26. Karpat F, Kalay O C, Dirik A E, Karpat E. Fault classification of wind turbine gearbox bearings based on convolutional neuralnetworks, Transdisciplinary Journal of Engineering & Science 2022; (2): 71-83, https://orcid.org/0000-0001-8474-7328
  • 27. Niaki S T, Alavi H, Ohadi A. Incipient fault detection of helical gearbox based on variational mode decomposition and time synchronous averaging, Structural Health Monitoring 2022; (5): 21-31. https://doi.org/10.1177/14759217221108489
  • 28. Kane P V, Andhare A B. Critical Evaluation and comparison of psychoacoustics, acoustics and vibration features for gear faultcorrelation and classification, Measurement (2020); (154): 1-28, https://doi.org/10.1016/j.measurement.2020.107495
  • 29. Attoui I, Fergani N, Boutasseta N, Oudjani B, Deliou A. A new time–frequency method for identification and classification of ball bearing faults, Journal of Sound and Vibration 2017; (397): 241-265, https://doi.org/10.1016/j.jsv.2017.02.041
  • 30. Dabrowski D. Condition monitoring of planetary gearbox by hardware implementation of artificial neural networks, Measurement 2016; (91): 295-308, https://doi.org/10.1016/j.measurement.2016.05.056
  • 31. Ammar D M, Oraby S E, Younes M A, Elsayed S E. Prediction of bearing service life using an auto regression moving average andresponse surface methodology, Applications of Modelling and Simulation 2022; (6): 1-9, http://arqiipubl.com/ojs/index.php/AMS_Journal/article/view/324/128
  • 32. Mishra H P, Jalan A. Analysis of faults in rotor-bearing system using three-level full factorial design and response surface methodology Noise & Vibration Worldwide 2021; (52): 1-12, https://DOI: 10.1177/09574565211030711
  • 33. Vanraj, Dhami S S, Pabla B S. Optimization of sound sensor placement for condition monitoring of fixed-axis gearbox, Cogent Physics 2017; (4), 1-19, https://dx.doi.org/10.1080/23311916.2017.1345673
  • 34. Goyal D, Vanraj, Pabla, B S, Dhami S S. Non-contact sensor placement strategy for condition monitoring of rotating machine-elements, Engineering Science and Technology, an International Journal 2019; (22): 489-501, https://doi.org/10.1016/j.jestch.2018.12.006
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-654269dc-8e86-4b16-95d0-10a3c1bd8c12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.