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Abstract

It is critical to estimate the workforce requirements for the production of blocks in shipbuilding. In this study, the 
number of workforce (man-day) required for the production of a passenger ship’s double bottom block was estimated. 
Initially, the production of the block was observed, and the average working performance of the mounting, welding, 
and grinding workers was recorded. Block drawings were examined and the work required was calculated. The 
amount of work increased, depending on any revisions required due to incorrect or incomplete designs. The average 
working performance of an employee is uncertain due to environmental factors, including the weather and working 
conditions, as well as health (both physical and mental). A two-stage stochastic programming model with recourse 
was established to estimate man-day required and a Sample Average Approximation (SAA) technique was used to 
obtain a near-optimum solution. The results of the study were compared with shipyard records and an agreement of 
approximately 90% was achieved.
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introduction

Shipbuilding comprises many complex activities which 
are carried out concurrently and necessitate systematic 
engineering [1,2]. These activities include steel hull 
manufacturing, pipe fitting, painting, machinery, and wiring. 
One of the initial phases of shipbuilding (after design), includes 
cutting the sheets. Following that, blocks are manufactured 
by welding the parts in a certain order [3,4]. After the blocks 
are transferred to the building berth, mounting and welding 
are completed, respectively. Thus, the hull structure of a ship 
is produced [5]. Poor decisions in process planning can lead 
to delays in delivery and, therefore, major cost overruns 

[6,7]. A production planning system that accurately reflects 
the production environment can ensure a high on-time 
performance and improve competitiveness [8,9]. Workforce 
planning, especially in the block manufacturing phase, is one 
of the major concerns of shipyards. Efforts to establish efficient 
production planning continue to improve the shipbuilding 
process. On the other hand, it is considered that planning in 
shipbuilding mostly depends on the experience of the staff [10]. 
There is a lack of academic studies on shipbuilding planning 
and increasing efficiency [8,11]. Predicting the required labour 
force (the objective of this study) would be very useful for 
proper planning. This may also provide a positive contribution 
to delivery performance and cost. On-time delivery is very 
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important for ship-owners and is essential for a shipyard if 
it is to receive new ship orders [12-14].

A  literature review revealed that improving block 
production and planning in a shipyard, the transportation 
of blocks, spatial planning, mounting and welding processes 
on the building berth, reducing duration, automatic process 
planning in mounting operations, and man-hour estimations 
have been examined by various studies. Lei et al. [15] proposed 
a mounting sequence planning method based on reasoning. 
In the study, the mounting sequence was optimised with 
geometric constraints and the fuzzy method. Porath et al. 
[16] developed a measurement-supported mounting method 
to shorten the mounting time. In order to determine the 
capacity requirement in the preproduction of a block, Kafalı 
et al. [17] examined the process from a stochastic perspective. 
Kang et al. [6] presented a block mounting sequence planning 
method by emphasising the optimum mounting time and 
welding deformations. Urbanski et al. [18] investigated the 
technological usefulness of panel line on the basis of welding 
technologies. Jeong et al. [19] created a new spatial layout 
planning model for large blocks based on the greedy algorithm. 
Afzalirad and Rezaeian [20] developed a new resource-
constrained parallel machine planning model for a block 
mounting scheduling problem. Wang et al. [21] proposed 
a scheduling model for panel line, including a rolling horizon 
and rescheduling, by considering many uncertain factors. 
Yuguang et al. [22] developed a hull assembly line balancing 
model based on the particle swarm optimisation algorithm. 
A method for planning the assembly of ship hulls that focuses 
on a welding sequence was developed by Iwankowicz [23]. 
In this study, an intelligent hybrid sequencing method was 
obtained, using fuzzy clustering, case-based reasoning and 
evolutionary optimization to determine the optimal assembly 
order. Kwon and Lee [24] focused on spatial planning based 
on the assembly of blocks. A mixed integer programming 
model and a two-stage heuristic algorithm was developed. 
Hadjina et al. [25] presented a new methodology based on the 
simulation of the robotic profile production line. By applying 
lean manufacturing to the panel line, Oliveira and Gordo [26] 
obtained substantial savings in both time and costs. Hur et 
al. [27] presented a man-hours estimation system, in terms 
of certain shipbuilding activities. Hu et al. [28] developed 
a heuristic hybrid algorithm for the block-building area, 
which is accepted as being an important bottleneck in the 
shipbuilding process. Zheng et al. [29] developed a spatial 
scheduling system by using the greedy search algorithm with 
the help of data obtained from a large ship. Liu et al. [30] 
applied discrete event simulation by modelling the stochastic 
events for dynamic spatial scheduling. Wahidi et al. [31] 
achieved a significant gain, in terms of man-hours, with 
the robot welding technology applied to the double bottom 
block. Liu and Jiang [32] proposed three different models 
utilising simple linear regression, multiple linear regression, 
and an artificial neural network, to estimate man-hour. They 
concluded that the artificial neural network model provides 
more accurate and reliable results. 

Based on the above-mentioned studies, it can be said that 
there is not enough academic study regarding the estimation 
of the workforce required in ship block production. The usual 
practice in shipyards is to use data from previously built 
ships to estimate the operating time or the expected number 
of working hours for a given sub-process. Similarly, it can 
be argued that production costs can be calculated using the 
same approach. However, this is not a systematic practice. 
There are techniques for man-hour estimation in many sectors 
[33,34] and new methods can be applied for a more realistic 
approach in shipyards. On the other hand, Kafalı et al. [17] 
conducted an analysis of the workforce, specifically focusing 
on preproduction workstations. They developed a two-stage 
stochastic program to determine workforce requirements. 
They mentioned that the model they presented could be 
used to optimise the workforce and enhance the production 
process in shipbuilding. Additionally, they suggested the 
need for a more comprehensive model that encompasses 
other production phases in ship block production. In this 
study, we address this issue by expanding on the previous 
study and incorporating all production phases involved in 
the production of a passenger ship’s double bottom block; 
grinding activity is included in the model, to obtain more 
realistic results. Moreover, the solution of the stochastic 
program is compared with real data and the results are 
validated. 

The remaining sections of this paper are organised as 
follows. First, general information about block production and 
a description of the problem are presented in the introduction. 
In the methodology section, the mathematical model is 
introduced, the steps of the solution method are explained, 
and a case study for a double bottom block is then presented. 
This is followed by the results and a discussion section. Finally, 
the conclusions are presented.

ACTIVITIES IN THE PRODUCTION OF SHIP BLOCKS

The block production process starts with the transport of 
plates and sections from the stockyard to the production area. 
The shot-blasted and priming-painted plates are prepared for 
CNC cutting, based on the design department’s data. After 
the marking and cutting process, the pre-production phase 
starts with the related parts [35].

Blocks are manufactured by joining the plates and 
profiles. The first step in the joining process is the 
mounting of the parts by spot-welding. Mounting is 
crucial for the healthy continuation of the welding and 
grinding processes. After that, the full welding process is 
performed by an appropriate welding method, where gas 
metal arc welding is generally preferred. Then, grinding is 
performed on the welds where necessary. In this process, 
the grinding wheel, in which the abrasive grains are held 
together, is used to remove tiny chips from the welds. 
Examples of these three processes and the main titles of 
the products obtained during the block manufacturing 
process are shown in Fig. 1 and Table 1 [36].
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Mounting Full welding Grinding

Fig. 1. Block production activities

Tab. 1. Interim products and definitions

Interim product Description Construction view

C, small group Constructions made by welding separate 
components.

D, module Combination of C and C.

E, panel Combination of large plates.

F, profiled panel Combination of profiles and panel.

G, sub block Combination of F and D.

H, bent panel Combination of large plates by bending.

K, block Combination of F and G.
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The bottom structure forms a flange of the hull girder. 
Therefore, the bottom structure is important, in terms of 
longitudinal strength. While contributing significantly to 
the strength, it distributes the local loading during docking. 
In addition, the bottom structure of a ship has to withstand 
bending stresses as well as water pressure. Single and double 
bottom structures are the two different forms of bottom 
structures. Moreover, longitudinal or transverse framing is 
applied to bottom structures [35]. A longitudinally framed 
double bottom block is examined in this study. 

DEFINITION OF THE PROBLEM

Shipbuilding is a labour-intensive production process 
but it is hard to determine the exact workforce required in 
production processes. Revisions due to incorrect or incomplete 
designs, customer demands, and the reworking of defective 
manufacturing may occur. Besides this, the performance of 
employees is variable [37].

This study aims to calculate the workforce required in 
the C, D, E, F, G, H, and K production phases of a double 
bottom block belonging to a passenger ship. For this purpose, 
the average working performance of mounting, welding, 
and grinding workers was determined by conducting field 
observations. All the drawings of the block were examined 
and the amount of work required for mounting, welding, and 
grinding each interim product was calculated, and yet the 
work to be done, depending on revisions and errors, increases 
and becomes variable. Working conditions and the weather, as 
well as the mental and physical health of an employee, cause 
the average working performance of a worker to fluctuate. 
Various measures are taken to prevent possible delays in 
the production process due to the increased workload and 
varying worker performance. For example, the production 
process can be compensated for by shifting workers from 
another compartment to the disrupted one. However, the cost 
of newly added workers would be higher than that of those 
already employed because the required tools and equipment 
should be moved to the relevant compartment; adaptation 
to the new work area would be required.

Considering the aforementioned situations, a mathematical 
model (called a ‘two-stage stochastic recourse model’) was 
created to calculate the man-day for mounting, welding, 
and grinding activities, to prevent unexpected cost increases 
and delays. It is difficult to obtain real solutions to two-
stage mathematical models and, thus, the Sample Average 
Approximation (SAA) technique was used in the solution 
of the model. Two stochastic situations were defined when 
creating the scenarios to be used in the solution. The first is 
the increase in workload, due to revisions and the rectification 
of defective manufacturing, and the second is the average 
performance of the workers. The increase in workload was 
followed up by the planning department of the shipyard. 
Accordingly, a 1-2%, 5-10%, 10-15%, and 15-20% range of 
increase in the E-F, C-D, G-H, and K production phases 
was observed, respectively. The examinations made in the 
production area show that the average worker’s performance 

can change randomly within the range of ± 10%. Monte 
Carlo sampling was applied for the generation of scenarios for 
the SAA solution method, in which the increased workload 
rates and the changes in performance were both considered. 
In stochastic mathematical models, where scenarios are 
expressed with a continuous or discrete distribution, the 
SAA technique provides convenience in the approximate 
solution of the problem [38].

The mathematical model is defined based on cost 
minimisation in worker wages. Therefore, the objective 
function would aim to calculate the workforce requirement 
that gives the minimum cost through the constraints relevant 
to the target. The duration of an activity is given by Eq. (1) [17].

The bottom structure forms a flange of the hull girder. Therefore, the bottom structure is 
important, in terms of longitudinal strength. While contributing significantly to the strength, it 
distributes the local loading during docking. In addition, the bottom structure of a ship has to 
withstand bending stresses as well as water pressure. Single and double bottom structures are the 
two different forms of bottom structures. Moreover, longitudinal or transverse framing is applied to 
bottom structures [35]. A longitudinally framed double bottom block is examined in this study.  
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           𝑑𝑑 = 𝐿𝐿
𝑃𝑃×𝑅𝑅                                          (1) 

where d is duration [day]; L is the amount of work [unit]; P is the average performance [unit/(man-
day)]; and R is the number of workers [man]. 

(1)

where d is duration [day]; L is the amount of work [unit]; 
P is the average performance [unit/(man-day)]; and R is the 
number of workers [man].

Here, multiplying the number of workers by the duration 
gives the workforce required or, in other words, the number 
of man-days needed to complete the work. In this case, Eq. (1) 
turns into the Eq. (2):

Here, multiplying the number of workers by the duration gives the workforce required or, in
other words, the number of man-days needed to complete the work. In this case, Eq. (1) turns into 
the Eq. (2):

𝑑𝑑 × 𝑅𝑅 = 𝐿𝐿
𝑃𝑃 (2)

Accordingly, the expression used becomes a parameter that includes the number of workers 
and time, becoming the decision variable used in the model.

METHODOLOGY

MATHEMATICAL MODEL

Stochastic programming encompasses the mathematical modelling to be used to make 
decisions under uncertainty [39]. The general form of the two-stage stochastic programming model 
with recourse is as follows [40].

min 𝑧𝑧 = 𝑐𝑐𝑇𝑇𝑥𝑥 + 𝐸𝐸𝜉𝜉[min𝑞𝑞(𝜔𝜔)𝑇𝑇𝑦𝑦(𝜔𝜔)]
      𝑠𝑠. 𝑡𝑡           𝐴𝐴𝐴𝐴 = 𝑏𝑏,
𝑇𝑇(𝜔𝜔)𝑥𝑥 + 𝑊𝑊𝑊𝑊(𝜔𝜔) = ℎ(𝜔𝜔),

𝑥𝑥 ≥ 0 ,  𝑦𝑦(𝜔𝜔) ≥ 0,
(3)

where 𝑥𝑥 is the first-stage decision vector; 𝑦𝑦 is the second-stage decision vector; ω is the stochastic 
event; A is the first-stage matrix; b represents the first-stage right-hand side values; T is the 
technology matrix; h represents the second-stage right-hand side values; and W is the recourse 
matrix. In this study, the decision vectors consist of the workforce (i.e. man-day), which are the 
product of the duration and the number of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage stochastic programming model with
recourse was developed to forecast the required man-day for mounting, welding, and grinding 
activities at each production phase of the double bottom block.

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = (𝒄𝒄𝟏𝟏𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑴𝑴))  +  𝒄𝒄𝟏𝟏𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝑾𝑾)) + 𝒊𝒊 ∙ 𝒄𝒄𝟏𝟏𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑮𝑮))

+ ∑𝓟𝓟𝒔𝒔

𝑺𝑺

𝒔𝒔=𝟏𝟏
(𝒄𝒄𝟐𝟐𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑴𝑴) )+ 𝒄𝒄𝟐𝟐𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝑾𝑾) ) + 𝒊𝒊 ∙ 𝒄𝒄𝟐𝟐𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑮𝑮) ))) 

s.t.
𝒊𝒊 ∙ 𝑷𝑷𝒔𝒔(𝒀𝒀,𝒁𝒁) ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝒁𝒁) + 𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝒁𝒁)) ≥  𝒊𝒊 ∙ 𝑳𝑳𝒔𝒔(𝒀𝒀,𝒁𝒁);  ∀ 𝒔𝒔 = 𝟏𝟏, … . . ,𝑺𝑺;

∀ 𝒀𝒀 ∈ {𝑪𝑪,𝑫𝑫,𝑬𝑬,𝑭𝑭,𝑯𝑯,𝑮𝑮,𝑲𝑲}; ∀ 𝒁𝒁 ∈ {𝑴𝑴,𝑾𝑾,𝑮𝑮}

𝑰𝑰𝑰𝑰 𝒀𝒀 = {𝑬𝑬} ∧  𝒁𝒁 = {𝑮𝑮} 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒊𝒊 = 𝟎𝟎 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊 = 𝟏𝟏 
𝒂𝒂𝒂𝒂𝒂𝒂 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 ≥ 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂𝒂𝒂 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

where 𝑐𝑐1𝑀𝑀 is the daily cost of a mounting worker, 𝑐𝑐1𝑊𝑊 is the daily cost of a welder, c1G is the daily cost
of a grinding worker, 𝑐𝑐2𝑀𝑀 is the daily cost of an additional mounting worker, 𝑐𝑐2𝑊𝑊 is the daily cost of
an additional welder, and 𝑐𝑐2𝐺𝐺 is the daily cost of an additional grinder. These are the constant
parameters of the objective function. 𝒫𝒫𝑠𝑠 is the probability of scenario s. Within each independent 
sample, the probabilities of the scenarios are considered to be equal.

(2)
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s.t.
𝒊𝒊 ∙ 𝑷𝑷𝒔𝒔(𝒀𝒀,𝒁𝒁) ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝒁𝒁) + 𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝒁𝒁)) ≥  𝒊𝒊 ∙ 𝑳𝑳𝒔𝒔(𝒀𝒀,𝒁𝒁);  ∀ 𝒔𝒔 = 𝟏𝟏, … . . ,𝑺𝑺;

∀ 𝒀𝒀 ∈ {𝑪𝑪,𝑫𝑫,𝑬𝑬,𝑭𝑭,𝑯𝑯,𝑮𝑮,𝑲𝑲}; ∀ 𝒁𝒁 ∈ {𝑴𝑴,𝑾𝑾,𝑮𝑮}

𝑰𝑰𝑰𝑰 𝒀𝒀 = {𝑬𝑬} ∧  𝒁𝒁 = {𝑮𝑮} 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒊𝒊 = 𝟎𝟎 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊 = 𝟏𝟏 
𝒂𝒂𝒂𝒂𝒂𝒂 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 ≥ 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂𝒂𝒂 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

where 𝑐𝑐1𝑀𝑀 is the daily cost of a mounting worker, 𝑐𝑐1𝑊𝑊 is the daily cost of a welder, c1G is the daily cost
of a grinding worker, 𝑐𝑐2𝑀𝑀 is the daily cost of an additional mounting worker, 𝑐𝑐2𝑊𝑊 is the daily cost of
an additional welder, and 𝑐𝑐2𝐺𝐺 is the daily cost of an additional grinder. These are the constant
parameters of the objective function. 𝒫𝒫𝑠𝑠 is the probability of scenario s. Within each independent 
sample, the probabilities of the scenarios are considered to be equal.

(3)

where x is the first-stage decision vector; y is the second-stage 
decision vector; ω is the stochastic event; A is the first-stage 
matrix; b represents the first-stage right-hand side values; 
T is the technology matrix; h represents the second-stage 
right-hand side values; and W is the recourse matrix. In this 
study, the decision vectors consist of the workforce (i.e. man-
day), which are the product of the duration and the number 
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of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage 
stochastic programming model with recourse was developed 
to forecast the required man-day for mounting, welding, and 
grinding activities at each production phase of the double 
bottom block. 

Here, multiplying the number of workers by the duration gives the workforce required or, in
other words, the number of man-days needed to complete the work. In this case, Eq. (1) turns into 
the Eq. (2):

𝑑𝑑 × 𝑅𝑅 = 𝐿𝐿
𝑃𝑃 (2)

Accordingly, the expression used becomes a parameter that includes the number of workers 
and time, becoming the decision variable used in the model.

METHODOLOGY

MATHEMATICAL MODEL

Stochastic programming encompasses the mathematical modelling to be used to make 
decisions under uncertainty [39]. The general form of the two-stage stochastic programming model 
with recourse is as follows [40].

min 𝑧𝑧 = 𝑐𝑐𝑇𝑇𝑥𝑥 + 𝐸𝐸𝜉𝜉[min𝑞𝑞(𝜔𝜔)𝑇𝑇𝑦𝑦(𝜔𝜔)]
      𝑠𝑠. 𝑡𝑡           𝐴𝐴𝐴𝐴 = 𝑏𝑏,
𝑇𝑇(𝜔𝜔)𝑥𝑥 + 𝑊𝑊𝑊𝑊(𝜔𝜔) = ℎ(𝜔𝜔),

𝑥𝑥 ≥ 0 ,  𝑦𝑦(𝜔𝜔) ≥ 0,
(3)

where 𝑥𝑥 is the first-stage decision vector; 𝑦𝑦 is the second-stage decision vector; ω is the stochastic 
event; A is the first-stage matrix; b represents the first-stage right-hand side values; T is the 
technology matrix; h represents the second-stage right-hand side values; and W is the recourse 
matrix. In this study, the decision vectors consist of the workforce (i.e. man-day), which are the 
product of the duration and the number of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage stochastic programming model with
recourse was developed to forecast the required man-day for mounting, welding, and grinding 
activities at each production phase of the double bottom block.
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𝑺𝑺
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(𝒄𝒄𝟐𝟐𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑴𝑴) )+ 𝒄𝒄𝟐𝟐𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝑾𝑾) ) + 𝒊𝒊 ∙ 𝒄𝒄𝟐𝟐𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑮𝑮) ))) 

s.t.
𝒊𝒊 ∙ 𝑷𝑷𝒔𝒔(𝒀𝒀,𝒁𝒁) ∙ (𝒅𝒅𝑹𝑹𝟏𝟏
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(𝒀𝒀,𝒁𝒁)) ≥  𝒊𝒊 ∙ 𝑳𝑳𝒔𝒔(𝒀𝒀,𝒁𝒁);  ∀ 𝒔𝒔 = 𝟏𝟏, … . . ,𝑺𝑺;

∀ 𝒀𝒀 ∈ {𝑪𝑪,𝑫𝑫,𝑬𝑬,𝑭𝑭,𝑯𝑯,𝑮𝑮,𝑲𝑲}; ∀ 𝒁𝒁 ∈ {𝑴𝑴,𝑾𝑾,𝑮𝑮}

𝑰𝑰𝑰𝑰 𝒀𝒀 = {𝑬𝑬} ∧  𝒁𝒁 = {𝑮𝑮} 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒊𝒊 = 𝟎𝟎 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊 = 𝟏𝟏 
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where 𝑐𝑐1𝑀𝑀 is the daily cost of a mounting worker, 𝑐𝑐1𝑊𝑊 is the daily cost of a welder, c1G is the daily cost
of a grinding worker, 𝑐𝑐2𝑀𝑀 is the daily cost of an additional mounting worker, 𝑐𝑐2𝑊𝑊 is the daily cost of
an additional welder, and 𝑐𝑐2𝐺𝐺 is the daily cost of an additional grinder. These are the constant
parameters of the objective function. 𝒫𝒫𝑠𝑠 is the probability of scenario s. Within each independent 
sample, the probabilities of the scenarios are considered to be equal.

(4)

where  is the daily cost of a mounting worker,  is the 
daily cost of a welder,  is the daily cost of a grinding worker, 

  is the daily cost of an additional mounting worker,  is 
the daily cost of an additional welder, and  is the daily cost 
of an additional grinder. These are the constant parameters 
of the objective function.  is the probability of scenario s. 
Within each independent sample, the probabilities of the 
scenarios are considered to be equal.

The other letters used in the model can be defined as follows: 
d represents duration; P, R, and L are the worker performance, 
number of workers, and amount of work, respectively; 
Y (written as a superscript) indicates the production phases 
(i.e. C, D, E, F, H, G, and K); and Z (written as a superscript) 
shows the activities (i.e. Mounting (M), Welding (W), and 
Grinding (G)). For example, dR1

( C,M) stands for the amount of 
mounting workforce allocated to the production phase C at 
the first stage. Also,  stands for the amount of additional 
mounting workforce for production phase C if scenario s 
occurs. Furthermore,  is the welder performance at the 
production phase D in scenario s and  is the grinding 
work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, 
welder, and grinder are constant.

In Eq. (4), ‘minz’ is the objective function representing 
the total labour cost. This objective function consists of two 
parts: the first stage and the second stage. The first stage is 
deterministic, while the second stage is stochastic.

In the first stage of the objective function, the daily cost of 
a mounting worker was multiplied by the total workforce for 
the mounting, the daily cost of a welder was multiplied by the 
total workforce for the welding, and the daily cost of a grinder 
was multiplied by the total workforce for the grinding.

In the second stage of the objective function, recourse 
costs were calculated. It is assumed that the costs of the 
additional workers are constant. At this stage, the daily cost 
of the additional mounting worker was multiplied by the 
mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, 
and the daily cost of the additional grinder was multiplied 
by the grinding workforce shortage.

Similar to the objective function, the decision variables 
were also divided into two parts, reflecting the decisions 
made before and after the realisation of an uncertain event, 
such as work amounts and worker performance fluctuations. 

 represents the first stage decision variable, which shows 
the amount of the workforce. In the same manner,  is 
the second stage decision variable, showing the amount of 
workforce after the realisation of an uncertain event for the 
relevant scenario.

Constraint equations provide the completion of scenario-
based work amounts. To do so, the calculated workforce 
amount was multiplied by the scenario-based performance. 
Since there is no grinding activity in ‘production phase E’, 
grinding is not included in this phase.

STEPS OF THE SAMPLE AVERAGE APPROXIMATION 
(SAA) TECHNIQUE

The SAA technique is used to solve the two-stage stochastic 
recourse model. This method allows us to deal with the 
problem in a smaller size and facilitate the solution. A sample 
of N scenarios (ξ1, ξ2, … … , ξN) is generated for the random 
vector ξ. Then, the expected value function 

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) 

 is 
calculated with the sample function 

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
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(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
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(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 
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variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
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𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
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 The 
steps of the SAA technique can be summarised as follows [41]. 

There are M(m = 1,2, ......, M) independent random samples 
with Nm scenarios (N: sample size). A sufficiently large 
reference sample is chosen: (N ' >> N). Here, the scenarios 
consist of combinations of the amount of work, revision 
status, and worker performance. The scenario table contains 
the final values for the amount of work and performance.

Step 1: This practice has eight different parameter sets. 
Therefore, the solution is performed for sixty different 
independent samples m. For each independent sample m, the 
following model is solved by any deterministic optimisation 
algorithm. In Eq. (5), 
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superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀
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𝑁𝑁𝑚𝑚
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𝑛𝑛=1 }               (5)  stands for minz, as seen in Eq. (4), 

and so it refers to the total workforce cost.

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀
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The SAA problem’s optimum value is shown by 

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) . Thus, 

it is possible to determine the optimum solution for each The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 and objective function value (

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) ,…,

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) ).

Step 2: The average of the optimal objective function values 
determined in the first stage () is calculated. This computation 
is also applied to eight different parameter sets.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(6)

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 is an unbiased estimator for 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 and a statistical 
lower limit for the optimum value of the true problem 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

*. 
A variance estimator for 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 is determined by Eq. (7). With 
The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 

optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  
Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 

is calculated. This computation is also applied to eight different parameter sets. 
𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1

𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚
𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
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this calculation, the average deviation of the objective function 
values from the average objective function is obtained.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(7)

Step 3: For each independent random sample with 
a reference sample size N', the true objective function value 
estimate is determined by resolving the following formulation, 
using the best solutions from step 1.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(8)

The statistical upper bound for the optimum value of the 
true problem 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

* is determined by Eq. (8) and the variance 
estimator of this value is calculated as follows:

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(9)

The average of the upper bound values, determined 
according to Eq. (8), can be calculated and the arithmetic 
average of the true objective function values (calculated 
for independent values of m for each parameter set) can be 
observed.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
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Also, the average of the variances calculated by Eq. (9) can 
be determined. With Eq. (11), the average deviation of the 
true objective function values is obtained from the average 
true objective function.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
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Step 4: Eq. (12) is used to determine the optimal gap of the 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔
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𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 solution. When this value approaches zero, it indicates 
convergence to the optimum solution.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2
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(12)

The estimated variance of the optimal gap of the related 
solution obtained by Eq. (11) is calculated as follows:

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(13)

Also, the average of the optimal gap values is calculated 
by Eq. (14). This value shows the average of the optimal gap 
values obtained from each parameter set.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑔𝑔̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (𝑆̅𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
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The average of the optimal gap and its variance are used in 
the calculation of confidence interval values. Accordingly, the 
average of the variances of the optimal gaps is found from:  

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (𝑥̂𝑥𝑁𝑁𝑚𝑚, … , 𝑥̂𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (𝑣̅𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

𝑣̅𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

𝑣̅𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for 𝑣̅𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − 𝑣̅𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇𝑥̂𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(𝑥̂𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

𝑔̅𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) − 𝑣̅𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥̂𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆𝑣̅𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
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1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1
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𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  
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The confidence interval for the average of the optimal 
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Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
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The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 
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Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 
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function. 

𝑆𝑆𝑔̂̅𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the 𝑥̂𝑥𝑁𝑁𝑚𝑚 solution. When this value 
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calculated as follows: 
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Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
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𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆𝑔̅𝑔𝑔𝑔𝑔𝑔2 ≔ 1
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The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  
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CASE STUDY: MAN-DAY PREDICTION FOR PASSENGER 
SHIP DOUBLE BOTTOM BLOCK PRODUCTION

The flow chart of the implementation can be seen in Fig. 2. 
Accordingly, to initiate the process, our first imperative was 
to gather the essential data necessary for our analysis. This 
involved conducting field research, where we observed and 
documented worker performance and activities within the 
production. The next crucial step was the development of 
a mathematical model designed to represent the problem 
we were addressing. This model was crafted in detail, 
incorporating various variables to accurately simulate the 
real-world situation. Additionally, numerous scenarios were 
created and then the model was solved with SAA.

Data collection through 
field observation

Development of the
mathematical model

Scenario creation by Monte 
Carlo sampling

Solving the model with 
SAA 

Is the variance 
and gap 

acceptable?

Provide results

Revise 
parameters

Yes No

Fig. 2. The flow chart of the implementation

In the case study, eight different forms were solved (Table 2). 
N indicates the number of scenarios in the independent 
sample selected from the reference sample, M is the number 
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of independently determined samples, and N' is the total 
number of scenarios in the reference sample, respectively.
Tab. 2. Parameters and values used in the application.

Set No
Parameter set values

1 2 3 4 5 6 7 8

Pa
ra

m
et

er
s N 20 200 20 200 20 200 20 200

M 5 5 10 10 5 5 10 10

N' 2000 2000 2000 2000 10000 10000 10000 10000

Firstly, the amount of work and performance scenarios 
were generated for N' = 2000 and N' = 10000. Ns for each 
different m were obtained by applying the Monte Carlo 
sampling method. However, the scenarios for all forms are 
not shown here, due to space limitations. A portion of the 
amount of work and performance scenarios produced for 
m = 1, N = 20 in set no. 1 is shown in Table 3 and Table 4, as 
examples. The costs are taken as c1 

M = 1080, c1 
W = 540, c1

G  = 540, 
c2 

M  = 1300, c2 
W  = 650, and c2

G  = 650 currency units. 

Tab. 3. Amount of work (labour) scenarios for m=1, N=20 in set no. 1
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)

L(
G

,G
)

L(K
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)

L(K
,W

)

L(K
,G

)

1 1382 407 402 455 153 138 367 147 1485 520 519 842 249 243 1768 560 460 1869 560 460

2 1362 406 409 465 151 139 367 147 1484 520 521 812 249 245 1842 556 444 1810 563 462

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

19 1353 406 404 459 149 138 365 147 1488 520 522 829 246 246 1796 569 449 1799 561 460

20 1379 417 415 454 154 136 368 147 1486 523 522 839 243 244 1833 560 446 1822 580 464

Tab. 4. Performance scenarios for m=1, N=20 in set no. 1

n
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P(G
,G

)
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)

P(K
,W

)

P(K
,G

)

1 208 92 106 173 69 60 309 692 193 735 153 195 106 159 143 86 66 67 37 35

2 227 95 99 147 58 66 340 756 205 783 152 188 115 161 144 75 65 66 37 33

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

19 225 91 100 161 68 69 324 777 182 695 171 177 119 155 139 85 68 65 41 34

20 227 89 116 157 68 67 327 752 185 762 161 186 117 140 153 87 62 59 39 33

Tab. 5. The calculated decision variable values for set no. 4
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7 3 2 7 5 15-16 18 6 3 1 1 4 17 22-23 7 4 7 6 27 36

The decision variables and related objective function values 
are calculated by using Eq. (5) and are given in Tables 5 and 6. 
Table 5 presents the 20 different decision variables computed 
for each independent sample in set no 4, where only the 
workforce values observed for dR1

( G,M) and dR1
( K,W) differ 

between 15-16 and 22-23, respectively. The other values are 
identical, e.g. all ten values for dR1

( C,M) = 7; dR1
(D,M) = 3... The 

first column in Table 6 shows the number of independent 
samples. Column 2 shows the objective function values and 
column 3 displays the true objective function value estimation 
calculated by Eq. (8). The variance estimator of these values is 
calculated by Eq. (9) and shown in column 4. The gap values 
calculated by Eq. (12) are presented in column 5 and the gap 
variances calculated by Eq. (13) are in column 6.
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Tab. 6. The calculated values for set no. 4

m

Table 6. The calculated values for set no. 4 
 

m 𝑣̂𝑣𝑁𝑁𝑚𝑚 𝑔̂𝑔𝑁𝑁′(𝑥̂𝑥𝑁𝑁𝑚𝑚) 𝑆𝑆𝑔̂𝑔𝑁𝑁′(𝑥𝑥𝑁𝑁𝑚𝑚)
2  gap variance 

1 150747 150940 5044 46.5 12548 
2 151204 150906 5212 13.2 12716 
3 150502 150906 5212 13.2 12716 
4 150922 150906 5212 13.2 12716 
5 151305 150906 5212 13.2 12716 
6 150955 150907 4947 14.2 12451 
7 150600 150906 5212 13.2 12716 
8 151208 150906 5212 13.2 12716 
9 150723 150906 5212 13.2 12716 
10 150766 150906 5212 13.2 12716 

 
RESULTS AND DISCUSSION 

 
There are many factors that cause uncertainties in the shipbuilding process. With stochastic 

programming models, approximate estimations can be achieved for workforce requirements under 
uncertainty. In this study, a two-stage stochastic mathematical model was created to predict the 
mounting, welding, and grinding workforce required for double bottom block production phases. 
The SAA method was used to obtain the approximate solution of this model, where the amount of 
work and average worker performance are uncertain. The problem was solved for eight different 
parameter sets and boundary values for all of the solutions are shown in Table 7. While the objective 
function values, which are calculated using the reference sample, are upper bounds, the objective 
function values obtained from the other scenarios are lower bounds. 
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RESULTS AND DISCUSSION

There are many factors that cause uncertainties in the 
shipbuilding process. With stochastic programming models, 
approximate estimations can be achieved for workforce 
requirements under uncertainty. In this study, a two-stage 
stochastic mathematical model was created to predict the 
mounting, welding, and grinding workforce required for 
double bottom block production phases. The SAA method 
was used to obtain the approximate solution of this model, 
where the amount of work and average worker performance 
are uncertain. The problem was solved for eight different 
parameter sets and boundary values for all of the solutions 
are shown in Table 7. While the objective function values, 
which are calculated using the reference sample, are upper 
bounds, the objective function values obtained from the other 
scenarios are lower bounds.
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In Table 7, the second and third columns represent the lower 
bounds. Accordingly, the mean objective values calculated by 
Eq. (6) are found in column two and their mean variances, 
calculated by Eq. (7), are found in column three. The fourth 
and fifth columns show the upper bounds. The mean value 
of the upper bound values calculated by Eq. (10) is indicated 
in column four and the mean variances calculated by Eq. (11) 
are presented in column five.

In Table 8, columns 2-21 show the best values of the 
decision variables obtained for each parameter set. The 22nd 
column indicates the best objective function values.

In Table 9, the second and third columns show the gap 
values calculated by Eq. (14) and their mean variances 
calculated by Eq. (15), respectively. The fourth column 
indicates the ratio of the mean gap value to the lower bound of 
the objective function. Columns 5-7 show the 90% confidence 
interval calculated by Eq. (16) for the gap values.

Tab. 8. The best results obtained by SAA.
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Tab. 9. Optimal gap and 90% confidence interval calculations

Set no

Average values
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parameter set. The 22nd column indicates the best objective function values. 
In Table 9, the second and third columns show the gap values calculated by Eq. (14) and their 

mean variances calculated by Eq. (15), respectively. The fourth column indicates the ratio of the 
mean gap value to the lower bound of the objective function. Columns 5-7 show the 90% confidence 
interval calculated by Eq. (16) for the gap values. 
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𝑁𝑁′=10000) as 150395 currency units. Among the sets 1, 3, 5, and 7 (i.e. scenarios with 𝑁𝑁=20), the 
third parameter set gives the best objective value of 148972 currency units. For each set, 𝑀𝑀 different 
gap values were calculated. After that, the average gap for each different set was determined as an 
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constant, it is observed that increasing the number of independent samples from 5 to 10 reduced the 
average gap from 43.948 to 2.348. The upper and lower bounds, which are calculated using the 
reference sample and selected scenarios, respectively, are shown in Fig. 5. 
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The best objective value is obtained from the eighth 
parameter set (i.e. N = 200, M = 10 N ' = 10000) as 150395 
currency units. Among the sets 1, 3, 5, and 7 (i.e. scenarios 
with N = 20), the third parameter set gives the best objective 

value of 148972 currency units. For each set, M different gap 
values were calculated. After that, the average gap for each 
different set was determined as an absolute value (Fig. 4), 
where the vertical axis is logarithmic.
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It can be seen that increasing the number of scenarios from 
20 to 200 for M = 5 and N ' = 2000 reduces the average gap 
from 446.094 to 103.030. It is also understood that increasing 
the value of N ' = 2000 to N ' = 10000 also helped to reduce the 
gap. For instance, while the mean gap for set 2 is calculated as 
103.030, this value is 43.948 for set 6. Provided that N = 200, 
and N ' = 10000 remain constant, it is observed that increasing 
the number of independent samples from 5 to 10 reduced 
the average gap from 43.948 to 2.348. The upper and lower 
bounds, which are calculated using the reference sample and 
selected scenarios, respectively, are shown in Fig. 5.

It can be seen that increasing the number of scenarios from 
20 to 200 makes the lower and upper bounds more stable. 
Besides, increasing M and N does not have a significant effect 
on the stability of the lower and upper bound values.

Fig. 6 presents the 90% confidence interval and average 
gaps and shows that increasing N rather than M is more 
effective in reducing the confidence interval. Also, increasing 
N' has little effect on reducing the confidence interval.

Fig. 5. Change in lower and upper bounds
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It can be seen that increasing the number of scenarios from 20 to 200 makes the lower and upper 
bounds more stable. Besides, increasing 𝑀𝑀 and 𝑁𝑁′ does not have a significant effect on the stability 
of the lower and upper bound values.  

Fig. 6 presents the 90% confidence interval and average gaps and shows that increasing 𝑵𝑵 
rather than 𝑴𝑴 is more effective in reducing the confidence interval. Also, increasing 𝑵𝑵′ has little 
effect on reducing the confidence interval.  
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𝑵𝑵 =200, instead of 20, significantly reduces the mean gap variance and increasing 𝑴𝑴 and 𝑵𝑵′ are 
less effective in decreasing the variance. 
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from this phase, leaving twenty decision variables. Here, the model data calculated for each 
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Average gap variances are shown in Fig. 7, whose vertical 
axis is logarithmic. Choosing N  =  200, instead of 20, 
significantly reduces the mean gap variance and increasing 
M and N ' are less effective in decreasing the variance.

It can be seen that increasing the number of scenarios from 20 to 200 makes the lower and upper 
bounds more stable. Besides, increasing 𝑀𝑀 and 𝑁𝑁′ does not have a significant effect on the stability 
of the lower and upper bound values.  

Fig. 6 presents the 90% confidence interval and average gaps and shows that increasing 𝑵𝑵 
rather than 𝑴𝑴 is more effective in reducing the confidence interval. Also, increasing 𝑵𝑵′ has little 
effect on reducing the confidence interval.  
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Fig. 7. Average gap variance values

Generally speaking, it was observed that, rather than 
enlarging the reference sample N ', increasing the number 
of selected scenarios N and independent samples M makes 
the objective function results more balanced and may improve 
the solution. Increasing the number of selected scenarios 
is important, in terms of decreasing the gap and variance. 
This means that the average gap is reduced as well. Therefore, 
the most effective parameter for decreasing the gap and 
variance is N.

T﻿he comparison of the developed model results with the 
actual shipyard records is shown in Table 10. As ‘production 
phase E’ does not involve any grinding activities, grinding is 
excluded from this phase, leaving twenty decision variables. 
Here, the model data calculated for each production phase 
is compared with the shipyard data. The results coincide at 
the 90% level. The observed difference between the shipyard 
data and the developed model results is attributed to the 
reliance on certain assumptions and simplifications during 
the analysis.

CONCLUSIONS

In labour-intensive production, such as the shipbuilding 
industry, it is very difficult to improve the process due to low 
automation, the mental status of the employees, etc. The goal 
of this study is to estimate the workforce (man-day) required 
and its cost for mounting, welding, and grinding activities 
in the production of a double bottom block of 38820 kg 
belonging to a passenger ship. A two-stage stochastic program 
with recourse was developed. Eight different parameter sets 
were configured and the SAA method was used to solve the 
model. The results indicate a certain level of agreement with 
the shipyard records.

Data from field observations reveal that worker 
performance is variable in character. Similarly, it has been 
realised that the amount of work may change due to reasons 
such as revision, customer amendment requests, or the need 
for reworking due to faulty production. So, the amount of 
work and average worker performance are uncertain factors. 
On the other hand, since the parameters have a great effect on 
the results, it is important to use the suitable most appropriate 
parameter set. 

In order to reduce the gap and variance, increasing N 
greatly improves the results, while increasing M and N ' 
provide partial improvement. Besides this, it was also 
concluded that increasing M and N has a positive effect on 
reducing the confidence interval. When the solutions of all 
parameter sets are examined, it can be seen that the minimum 
gap is obtained from the eighth parameter set (i.e. N ' = 10000, 

Tab. 10. Comparison of the results with the shipyard

Product
Mounting (man-day) Ratio Welding (man-day) Ratio Grinding (man-day) Ratio

Model (M) Shipyard (S) (M/S) Model (M) Shipyard (S) (M/S) Model (M) Shipyard (S) (M/S)

C 7 8 0.88 6 7 0.86 7 9 0.78

D 3 5 0.60 3 4 0.75 4 5 0.80

E 2 2 1.00 1 1 1.00 - - -

F 7 6 1.17 1 1 1.00 7 8 0.88

H 5 5 1.00 4 5 0.80 6 7 0.86

G 15 17 0.88 17 19 0.89 27 28 0.96

K 18 20 0.90 23 25 0.92 36 39 0.92

Total 57 63 0.90 55 62 0.89 87 96 0.91
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N = 200, and M = 10); whereas, the minimum objective is 
obtained in the fifth set. The reason for the minimum gap 
can be interpreted as the upper and lower bounds being quite 
close to each other. In this context, LC,M, LD,M, LE,M, LF,M, LH,M, 
LG,M,and LK,M production phases in the mounting area require 
7, 3, 2, 7, 5, 15, and 18 man-day, respectively; LC,W, LD,W, LE,W, 
LF,M, LH,W, LG,W, and LK,W production phases in the welding 
area require 6, 3, 1, 1, 4, 17, and 23 man-day; and LC,G, LD,G, 
LF,G, LH,G, LG,G,and LK,G production phases in the grinding 
area require 7, 4, 7, 6, 27, and 36 man-day. As a result, the 
total labour cost for this block was estimated to be 150395 
currency units.

One of the prerequisites for utilising the established 
model is the execution of a production control system in 
the shipyard, to continually measure current performance. 
The implementation of such innovations in a  shipyard 
faces employee resistance and organisational, economic, 
and technical challenges. However, these challenges can be 
overcome by emphasising the contribution of this cultural 
change to the planning of the production process. Another 
requirement is software which is capable of determining 
the length of the joint interface for calculating the amount 
of work, thereby speeding up the process; otherwise, it may 
take a long time.

In a  future study, other shipbuilding processes, such 
as preparation activities (cutting, marking, etc.) of plates 
and profiles, outfitting, etc., may be included in the model. 
Moreover, transforming the model into a practically usable 
software-supported tool that can be employed by shipyards 
for the estimation of man-day needed for a specific activity 
(e.g. a block or a whole ship) is thought. Actual performance 
and work amount (workload) serve as data input for the 
software tool to predict the required workforce.
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