Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 24, No. 1 | 103--117
Tytuł artykułu

Open-loop control system for high precision extrusion-based bioprinting through machine learning modelling

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioprinting is a process that uses 3D printing techniques to combine cells, growth factors, and biomaterials to create biomedical components, often with the aim of imitating natural tissue characteristics. Typically, 3D bioprinting adopts a layer-by-layer method, using materials known as bio-inks to build structures resembling tissues. This study introduces an open-loop control system designed to improve the accuracy of extrusion-based bioprinting techniques, which is composed of a specific experimental setup and a series of algorithms and models. Firstly, a method employing Logistic Regression is used to select the tests that will serve to train and test the following model. Then, using a Machine Learning Algorithm, a model that allows the optimization of printing parameters and enables process control through an open-loop system was developed. Through rigorous experimentation and validation, it is shown that the model exhibits a high degree of accuracy in independent tests. Thus, the control system offers predictability and adaptability capabilities to ensure the consistent production of high-quality bioprinted structures. Experimental results confirm the efficacy of this machine learning model and the open-loop control system in achieving optimal bioprinting outcomes.
Wydawca

Rocznik
Strony
103--117
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
Bibliografia
  • [1] FERRARI A., FRANK D., HENNEN L., et al., 2018, Additive Bio-Manufacturing: 3D Printing for Medical Recovery and Human Enhancement, European Parliamentary Research Service (EPRS), Report Number: PE 614.571.
  • [2] HE Y., GAO Q., JIN Y., 2022, Cell Assembly with 3D Bioprinting, Wiley-VCH.
  • [3] NEAGU A., 2023, Towards 4D Bioprinting, Academic Press, Elsevier Inc., London.
  • [4] SANTONI S., GUGLIANDOLO S.G., SPONCHIONI M., MOSCATELLI D., COLOSIMO B.M., 2021, 3D Bioprinting: Current Status and Trend – a Guide to the Literature and Industrial Practice, Bio-Design and Manufacturing, 5, 14–42, https://doi.org/10.1007/s42242-021-00165-0.
  • [5] GILLISPIE G., PRIM P., COPUS J., FISHER J., MIKOS A.G., YOO J.J., ATALA A., LEE S.J., 2020, Assessment Methodologies for Extrusion-Based Bioink Printability, Biofabrication, 12/2, 022003, https://doi.org/10.1088/1758-5090/ab6f0d.
  • [6] BOTT K., UPTON Z., SCHROBBACK K., EHRBAR M., HUBBELL J.A., LUTOLF M.P., RIZZI S.C., 2010, The Effect of Matrix Characteristics on Fibroblast Proliferation in 3D Gels, Biomaterials, 31/32, 8454–8464, https://doi.org/10.1016/j.biomaterials.2010.07.046.
  • [7] SCHWAB A., LEVATO R., D’ESTE M., PILUSO S., EGLIN D., MALDA J., 2020, Printability and Shape Fidelity of Bioinks in 3D Bioprinting, Chem. Rev. 120, 11028–11055, https://doi.org/10.1021/acs.chemrev.0c00084.
  • [8] NG W.L., CHAN A., ONG Y., CHUA C., 2020, Deep Learning for Fabrication and Maturation of 3D bioprinted Tissues and Organs, Virtual and Physical Prototyping, 15, 1–19, https://doi.org/10.1080/17452759.2020.1771741.
  • [9] VERHEYEN C., UZEL S., KURUM A., ROCHE E., LEWIS J., 2023, Integrated Data-Driven Modelling and Experimental Optimization of Granular Hydrogel Matrices, Matter, 6, 1–22, https://doi.org/10.1016/j.matt.2023.01.011.
  • [10] CHATURVEDI M., VENDAN S.A., 2022, Data-Driven Models in Machine Learning: an Enabler of Smart Manufacturing, Big Data Analytics in Smart Manufacturing, P. Suresh, T. Poongodi, B. Balamurugan and M. Sharma (Eds.), 35–68, Chapman and Hall-CRC.
  • [11] YU C., JINGCHAO J., 2020, A Perspective on Using Machine Learning in 3D Bioprinting, International Journal of Bioprinting, 6/1, 253, https://doi.org/10.18063/ijb.v6i1.253.
  • [12] MALEKPOUR A., CHEN X., 2022, Printability and Cell Viability in Extrusion-Based Bioprinting form Experimental, Computational, and Machine Learning Views, Journal of Functional Biomaterials, 13.
  • [13] SUN J, YAO K., AN J., JING L., HUAN K., HUANG D., 2023, Machine Learning and 3D Bioprinting, International Journal of Bioprinting, 9/4, 717, https://doi.org/10.18063/ijb.717.
  • [14] NING H., ZHOU T., JOO S., 2023, Machine Learning Boosts Three-Dimensional Bioprinting, International Journal of Bioprinting, 9/4, 739, https://doi.org/10.18063/ijb.739.
  • [15] VENKATA KRISHNA D., MAMILLA R.S., 2023, Machine Learning-Assisted Extrusion-Based 3D Bioprinting for Tissue Regeneration Applications, Annals of 3D Printed Medicine, 12, 100132, https://doi.org/10.1016/j.stlm.2023.100132.
  • [16] FU Z., ANGELINE V., SUN W., 2021, Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter, 2021, International Journal of Bioprinting, 7/4, 434, https://doi.org/10.18063/ijb.v7i4.434.
  • [17] LEE J., OH S., AN S., KIM W., KIM S., 2020, Machine Learning-Based Design Strategy for 3D Printable Bioink: Elastic Modulus and Yield Stress Determine Printability, 2020 May 28, Biofabrication, 12/3, 035018, https://doi.org/10.1088/1758-5090/ab8707.
  • [18] CONEV A., LITSA E., PEREZ M., DIBA M., MIKOS A., KAVRAKI L., 2020, Machine Learning Guided 3D Printing of Tissue Engineering Scaffolds, Tissue Engineering, Part A, 2020 Dec. 26/23-24,1359-1368, https://doi.org/10.1089/ten.TEA.2020.0191.
  • [19] SHIWARSKI D.J., HUDSON A.R., TASHMAN J.W., FEINBERG A.W., 2021, Emergence of Fresh 3D Printing as a Platform for Advanced Tissue Biofabrication, APL Bioeng. 5/1. 010904, https://doi.org/10.1063/5.0032777.
  • [20] ARMSTRONG A., PFEIL A., ALLEYNE A., WAGONER JOHNSON A., 2021, Process Monitoring and Control Strategies in Extrusion-Based Bioprinting to Fabricates Partially Graded Structures, Bioprinting 21, e00126, https://doi.org/10.1016/j.bprint.2020.e00126.
  • [21] YANG S., CHEN Q., WANG L., XU M., 2022, In-Situ Defect Detection and Feedback Control with Three-Dimensional Extrusion-Based Bioprinter-Associated Optical Coherence Tomography, International Journal of Bioprinting 9/1, 624, https://doi.org/10.18063/ijb.v9i1.624.
  • [22] YANG S., WANG L., CHEN C., XU M., 2021, In-Situ Process Monitoring and Automated Multi-Parameter Evaluation Using Optical Coherence Tomography During Extrusion-Based Bioprinting, Additive Manufacturing, 47, 102251, https://doi.org/10.1016/j.addma.2021.102251.
  • [23] SCHMIEG B., GRETZINGER S., SCHUHMANN S., GUTHAUSEN G., HUBBUCH J., 2022, Magnetic Resonance Imaging as a Tool for Quality Control in Extrusion-Based Bioprinting, Biotechnology Journal, 17/5, e2100336, https://doi.org/10.1002/biot.202100336.
  • [24] CHANSORIA P., SHIRWAIKER R., 2019, Characterizing the Process Physics of Ultrasound-Assisted Bioprinting, Scientific Reports, 9, 1–17, 13889, https://doi.org/10.1038/s41598-019-50449-w.
  • [25] RULAND A., GILMORE K.J., DAIKUARA L.Y., FAY C.D., YUE Z., WALLACE G.G., 2019, Quantitative Ultrasound Imaging of Cell-Laden Hydrogels and Printed Constructs, Acta Biomaterialia, 91, 173–185, https://doi.org/10.1016/j.actbio.2019.04.055.
  • [26] EMEBU S., OLABANJI OGUNLEYE R., ACHBERGEROVA E., VITKOVA L., PONIZIL P., MENDOZA MARTINEZ C., 2023, Review and Proposition for Model-Based Multivariable-Multiobjective Optimisation of Extrusion-Based Bioprinting, Applied Materials Today, 34, 101914, https://doi.org/10.1016/j.apmt.2023.101914.
  • [27] CANNY J., 1986, A Computational Approach to Edge Detection, IEEE Transactions on pattern analysis and machine intelligence, 6, 679–698, https://doi.org/10.1109/TPAMI.1986.4767851.
  • [28] SMOLA A.J., SCHÖLKOPF B., 2004, A Tutorial on Support Vector Regression, Statistics and Computing, 14, 199–222, https://doi.org/10.1023/B:STCO.0000035301.49549.88.
  • [29] BISHOP C.M,, 2010, Pattern Recognition and Machine Learning, Chapter 7 Sparse Kernel Machines.
  • [30] TANGE R.I., RASMUSSEN M.A., TAIRA E., et al., 2017, Benchmarking Support Vector Regression Against Partial Least Squares Regression and Artificial Neural Network: Effect of Sample Size on Model Performance, Journal of Near Infrared Spectroscopy, 25/6. 381–390, https://doi.org/10.1177/0967033517734.
  • [31] CASTERAN F., DELAGE K., HASCOËT N., et al., 2022, Data-Driven Modelling of Polyethylene Recycling Under High-Temperature Extrusion, Polymers, 14/4, 800, https://doi.org/10.3390/polym14040800.
  • [32] HASCOËT J.Y., ROSA B., DE VILLEMAGNE P., HALARY F., 2017, Modeling of 4D-Bioprinting Process for Improved Final Resolution of a Tissue, Conference: 3D Bioprinting in Cancer Research, Nantes.
  • [33] HASCOËT J.Y., CHABOT A., RAUCH M., 2017, Towards Closed Loop Control for Additive Manufacturing, Conference on Welding and Additive Manufacturing, Metz, France.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-652a489f-f1a4-4e6d-bb2f-a8943a5a66be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.