Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | R. 95, nr 4 | 86--92
Tytuł artykułu

Dynamical processes simulation of vibrational mounting devices and synthesis of their parameters

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Symulacja procesów dynamicznych wibracyjnych urządzeń montażowych i synteza ich parametrów
Języki publikacji
EN
Abstrakty
EN
A complex mathematical model of dynamic processes in vibrational mounting device for assembly robot is given. Such mathematical model makes it possible to research the starting process of the mechanism, the steady-state regimes and spatial motions of any points of the assembling part. A rational model for the motor with unbalance at controlled starting is proposed, which lead to spatial oscillations of the grab and part. With the help of ideas of the sensitivity theory the algorithm for parameters synthesis of the device by using natural modes of oscillations is developed. The following results are presented: calculations and experiments of free oscillations; synthesis of device parameters; studies of dynamic processes at the mechanism starting and at steady-state regimes, spatial motions of the characteristic points for assembling part.
PL
Streszczenie. Podano złożony model matematyczny procesów dynamicznych w wibracyjnym urządzeniu dla robota montażowego. Taki model pozwala badać proces uruchomienia mechanizmu, tryby w stanie ustalonym i ruchy przestrzenne dowolnych punktów części złożonej. Zaproponowano model silnika z niewyważeniem przy kontrolowanym starcie, który prowadzi do przestrzennych oscylacji chwytaka i części. Za pomocą koncepcji teorii wrażliwości opracowano algorytm syntezy parametrów urządzenia za pomocą naturalnych trybów oscylacji.
Wydawca

Rocznik
Strony
86--92
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Kharkiv National University of Civil Engineering and Architecture, 40 Sumska Str., Kharkiv, 61002, Ukraine, shatokhinvlm@gmail.com
  • Kharkiv National University of Civil Engineering and Architecture, 40 Sumska Str., Kharkiv, 61002, Ukraine, sobol_vn@ukr.net
  • Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland, waldemar.wojcik@pollub.pl
Bibliografia
  • [1] Vartanov, M.V., Bojkova, L.V., Zinina,I.N., Mathematical model of robotic assembly by means of adaptation and low-frequency vibration, Assembly Automation, 37 (2017), 130-134.
  • [2] Qu, S., Jiang, Z., A memetic algorithm approach for batchmodel assembly line balancing problem of sub-block in shipbuilding, Proceedings of the Institution of Mechanical Engineers Part B, Journal of Engineering Manufacture, 228 (10) (2014), 1290-1304.
  • [3] Shatokhin, V.M., Dynamical processes simulation in vibrational mounting devices for assembly robots, Vibrations in technique and technology, 3 (59) (2010), 143-153.
  • [4] Felip, J., Morales, A., Robust sensor-based grasp primitive for a three-finger robot hand, In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), 1811–1816.
  • [5] Gomez, G., Hernandez, A., Hotz, P.E., An adaptive neural controller for a tendon driven robotic hand, In: 9th International Conference on Intelligent Autonomous Systems (IAS-9) (2006), 298–307.
  • [6] Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K., Automatic grasp planning using shape primitives, In: IEEE International Conference on Robotics and Automation 2 (2003), 1824–1829.
  • [7] Jcobi, P., Fügemechanismen für die automatisierte Montage mit Industrierobotern, Karl-Marx-Stadt, Wissenschaftliche Zeitschrift der Technischen Hochschule, (1982), 96.
  • [8] Shatokhin, V.M., About the identification of parameters of unbalanced oscillating devices with eccentric rotor and asynchronous drive, Vibrations in technique and technology, 3 (83) (2017), 41-50.
  • [9] iselovskaya, E.V., Panovko, G.Ya., Shokhin, A.E., Oscillations of the mechanical system, excited by unbalanced rotor of induction motor. Journal of Machinery Manufacture and Reliability, 42 (6) (2013), 457–462.
  • [10] Gorbatiyk, R., Palamarchuk, I., Chubuk, R., Electromechanical model of machine for vibroabrasive treatment of machine parts. Ukrainian journal of mechanical engeneering and materials science, 1 (1) (2015), 35–44.
  • [11] Cherno, A.A., Controul of resonant electromagnetic vibration drive using a digital filtering algorithm based on discrete Fourier transform. Journal of automation and information sciences, 46 (2014), 53-68.
  • [12] Ragulskis, K., Some problems of nonlinear precise vibromechanics and vibroengineering (summary). Journal of vibroengineering, 13 (2011), n.3, 590-618.
  • [13] Akhtar, I., Borggaard, J., Hay, A., Shape sensitivity analysis in flow models using a finite-difference approach. Mathematical problems in engineering, 2010 (2010), ID 209780, 22.
  • [14] White, Ch.,W., Maytum, B.D., Eigensolution sensitivity to parametric model perturbations. The shock and vibration bulletin, 46 (1996), 123–133.
  • [15] Vasilevskyi, O.M. Metrological characteristics of the torque measurement of electric motors, International Journal of Metrology and Quality Engineering, 8, art. no. 7, (2017). DOI: 10.1051/ijmqe/2017005
  • [16] Vasilevskyi, O.M., Kulakov, P.I., Ovchynnykov, K.V., Didych, V.M. Evaluation of dynamic measurement uncertainty in the time domain in the application to high speed rotating machinery, International Journal of Metrology and Quality Engineering, 8, art. no. 25, (2017). DOI: 10.1051/ijmqe/2017019
  • [17] Vasilevskyi, O.M. Methods of determining the recalibration interval measurement tools based on the concept of uncertainty, Technical Electrodynamics 6 (2014), 81-88.
  • [18] Vedmitskyi, Y.G., Kukharchuk, V.V., Hraniak, V.F. New nonsystem physical quantities for vibration monitoring of transient processes at hydropower facilities, integral vibratory accelerations // Przeglad Elektrotechniczny 93 (3) (2017), 6972.
  • [19] Kukharchuk, V.V., Kazyv, S.S., Bykovsky, S.A., Discrete wavelet transformation in spectral analysis of vibration processes at hydropower units, Przeglad Elektrotechniczny 93 (5) (2017), 65-68.
  • [20] Kukharchuk V.V., Hraniak V.F., Vedmitskyi Y.G., Bogachuk V.V., and etc. "Noncontact method of temperature measurement based on the phenomenon of the luminophor temperature decreasing", Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100312F (28 September 2016).
  • [21] Kukharchuk V.V., Bogachuk V.V., Hraniak V.F., Wójcik W., Suleimenov B., Karnakova G., "Method of magneto-elastic control of mechanic rigidity in assemblies of hydropower units", Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104456A (7 August 2017).
  • [22] Azarov O.A., Dudnyk O.V., Kaduk O.V., Smolarz A., Burlibay A., "Method of correcting of the tracking ADC with weight redundancy conversion characteristic", Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161V (17 December 2015).
  • [23] Osadchuk V.S., Osadchuk A.V. The magneticreactive effect in transistors for construction transducers of magnetic field, Electronics and Electrical Engineering. – Kaunas: Technologija, 3 (109) (2011), 119-122.
  • [24] Ostrowski M., Jarzyna W., Vibration reduction of nonlinear object with an adaptive proportional-derivative controller with a mras structure. Informatyka Automatyka Pomiary w Gospodarce I Ochronie Środowiska IAPGOŚ 6(1)/2016, 51–54.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6508254e-f355-4a52-b31d-5da3280c33ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.