Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 3 | 760--772
Tytuł artykułu

Parkinson's disease monitoring from gait analysis via foot-worn sensors

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: In Parkinson's disease (PD), neuronal loss in the substantia nigra ultimate in dopaminergic denervation of the stiratum is followed by disarraying of the movements' preciseness, automatism, and agility. Hence, the seminal sign of PD is a change in motor performance of affected individuals. As PD is a neurodegenerative disease, progression of disability in mobility is an inevitable consequence. Indeed, the major cause of morbidity and mortality among patients with PD is the motor changes restricting their functional independence. Therefore, monitoring the manifestations of the disease is crucial to detect any worsening of symptoms timely, in order to maintain and improve the quality of life of these patients. Aim: The changes in motion of patients with PD can be ascertained by the help of wearable sensors attached to the limbs of subjects. Then analysing the recorded data for variation of signals would make it possible to figure an individualized profile of the disease. Advancement of such tools would improve understanding of the disease evolution in the long term and simplify the detection of precipitous changes in gait on a daily basis in the short term. In both cases the apperception of such events would contribute to improve the clinical decision making process with reliable data. To this end, we offer here a computational solution for effective monitoring of PD patients from gait analysis via multiple foot-worn sensors. Methods: We introduce a supervised model that is fed by ground reaction force (GRF) signals acquired from these gait sensors. We offer a hybrid model, called Locally Weighted Random Forest (LWRF), for regression analysis over the numerical features extracted from input signals to predict the severity of PD symptoms in terms of Universal Parkinson Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale. From GRF signals sixteen time-domain features and seven frequency-domain features were extracted and used. Results and conclusion: An experimental analysis conducted on a real data acquired from PD patients and healthy controls has shown that the predictions are highly correlated with the clinical annotations. Proposed approach for severity detection has the best correlation coefficient (CC), mean absolute error (MAE) and root mean squared error (RMSE) values with 0.895, 4.462 and 7.382 respectively in terms of UPDRS. The regression results for H&Y Scale discerns that proposed model outperforms other models with CC, MAE andRMSE with values 0.960, 0.168 and 0.306 respectively. In classification setup, proposed approach achieves higher accuracy in comparison with other studies with accuracy and specificity of 99.0% and 99.5% respectively. Main novelty of this approach is the fact that an exact value of the symptom level can be inferred rather than a categorical result that defines the severity of motor disorders.
Wydawca

Rocznik
Strony
760--772
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Computer Engineering, Faculty of Engineering, Başkent University, Turkey, berdas@baskent.edu.tr
autor
  • Department of Electrical and Electronics Engineering, Faculty of Engineering, Başkent University, Turkey, herdem@baskent.edu.tr
autor
  • Department of Computer Engineering, Faculty of Engineering, Başkent University, Turkey, hogul@baskent.edu.tr
Bibliografia
  • [1] Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68(5):384–6.
  • [2] de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A. Prevalence of Parkinson's disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000;54(11 Suppl 5):S21–3.
  • [3] Jankovic J. Progression of Parkinson disease: are we making progress in charting the course? Arch Neurol 2005;62:351–2.
  • [4] Goetz CG, Poewe W, Rascol O, Sampaio C. Evidence-based medical review update: pharmacological and surgical treatments of Parkinson's disease: 2001 to 2004. Mov Disord 2005;20(5):523–39.
  • [5] Silva de Lima AL, Hahn T, de Vries NM, Cohen E, Bataille L, Little MA, Baldus H, Bloem BR, Faber MJ. Large-scale wearable sensor deployment in Parkinson's patients: the Parkinson@Home study protocol. JMIR Res Protoc 2016;5(3).
  • [6] Bhidayasiri R, Martinez-Martin P. Clinical assessments in Parkinson's disease: scales and monitoring. Int Rev Neurobiol 2017;132:129–82.
  • [7] Kostek B, Kaszuba K, Zwan P, Robowski P, Slawek J. Automatic assessment of the motor state of the Parkinson's disease patient—a case study. Diagn Pathol 2012;7(18).
  • [8] Nicoletti A, Mostile G, Portar G, Luca A, Patti F, Zappia M. Computer-assisted cognitive rehabilitation on freezing of gait in Parkinson's disease: a pilot study. Neurosci Lett 2017;654:38–41.
  • [9] Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh M, Bonato P. Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors. IEEE Trans Inf Technol Biomed 2009;13(6):864–73.
  • [10] Tzallas AT, Tsipouras MG, Rigas G, Tsalikakis DG, Karvounis EC, Chondrogiorgi M, Psomadellis F, Cancela J, Pastorino M, Waldmeyer MT, Konitsiotis S, Fotiadis DI. PERFORM: a system for monitoring, assessment and management of patients with Parkinson's disease. Sensors (Basel) 2014;14(11):21329–57.
  • [11] Aminian K, Trevisan C, Najafi B, Dejnabadi H, Frigo C, Pavan E, Telonio A, Cerati F, Marinoni EC, Robert P, Leyvraz PF. Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 2004;20(1):102–7.
  • [12] Burkhard P, Shale H, Langston J, Tetrud J. Quantification of dyskinesia in Parkinson's disease: validation of a novel ınstrumental method. Mov Disord 1999;14:754–63.
  • [13] Mera TO, Heldman DA, Espay AJ, Payne M, Giuffrida JP. Feasibility of home-based automated Parkinson's disease motor assessment. J Neurosci Methods 2011;203:152–6.
  • [14] Spain R, George RS, Salarian A, Mancini M, Wagner JM, Horak FB, Bourdette D. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012;35:573–8.
  • [15] Lift Labs. https://liftlabsdesign.com/#home [accessed 01.05.18].
  • [16] Rescue Project. http://hces-online.net/websites/rescue/ [accessed 10.04.18].
  • [17] Parreha. Available online: http://www.ist-world.org/ProjectDetails.aspx?ProjectId=25c70beafab742a3686e [accessed 10.12.17].
  • [18] Parkaid. http://www.parkaid.net/ [accessed 30.03.18].
  • [19] Daphne. http://clinicaltrials.gov/ct2/show/NCT00141518 [accessed 09.01.18].
  • [20] Help. http://www.aal-europe.eu/projects/help/ [accessed 19.11.17].
  • [21] Mazilu S, Blanke U, Hardegger M, Troster G, Gazit E, Dorfman M, Hausdorff JM. Gait Assist: A wearable assistant for gait training and rehabilitation in Parkinson's disease. Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops); 2014.
  • [22] Cabestany J, Perez Lopez C, Sama A, Moreno JM, Bayes A, Rodriguez-Molinero A. REMPARK: when AI and technology meet Parkinson disease assessment. Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES); 2013.
  • [23] Aminian K, Najafi B. Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Anim Virtual Worlds 2004;15(2):79–94.
  • [24] Asuroglu T, Acici K, Erdas CB, Ogul H. Texture of activities: exploiting local binary patterns for accelerometer data analysis. SITIS'16 12th International Conference on Signal-Image Technology and Internet-Based Systems IEEE; 2016.
  • [25] Erdas CB, Atasoy I, Acici K, Ogul H. Integrating features for accelerometer-based activity recognition. Procedia Comput Sci 2016;98:522–57.
  • [26] Zhao Y, Heida T, van Wegen EE, Bloem BR, van Wezel RJ. Ehealth support in people with Parkinson's disease with smart glasses: a survey of user requirements and expectations in the Netherlands. J Parkinson's Dis 2015;5 (2):369–78.
  • [27] Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003;17(1):68–74.
  • [28] Chen PH, Wang RL, Liou DJ, Shaw JS. Gait disorders in Parkinson's disease: assessment and management. Int J Gerontol 2013;7(4):189–93.
  • [29] Bamberg SJM, Benbasat AY, Scarborough DM, Krebs DE, Paradiso JA. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed 2008;12:413–23.
  • [30] Salarian A, Burkhard PR, Vingerhoets FJ, Jolles BM, Aminian K. A novel approach to reducing number of sensing units for wearable gait analysis systems. IEEE Trans Biomed Eng 2013;60:72–7.
  • [31] Li G, Liu T, Gu L, Inoue Y, Ning H, Han M. Wearable gait analysis system for ambulatory measurement of kinematics and kinetics. Proceedings of the 2014 IEEE Sensors; 2014.
  • [32] Chen Y, Hu W, Yang Y, Hou J, Wang Z. A method to calibrate installation orientation errors of inertial sensors for gait analysis. Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA); 2014.
  • [33] Takeda R, Lisco G, Fujisawa T, Gastaldi L, Tohyama H, Tadano S. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Sensors 2014;14:23230–47.
  • [34] Hundza SR, Hook WR, Harris CR, Mahajan SV, Leslie PA, Spani CA, Spalteholz LG, Birch BJ, Commandeur DT, Livingston NJ. Accurate and reliable gait cycle detection in Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng 2014;22:127–37.
  • [35] Ferster ML, Mazilu S, Tröster G. Gait parameters change prior to freezing in Parkinson's disease: a data-driven study with wearable ınertial units. Proceedings of the 10th EAI International Conference on Body Area Networks (BodyNets' 15); 2015.
  • [36] Wang Z, Ji R. Estimate spatial-temporal parameters of human gait using inertial sensors. Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER); 2015.
  • [37] González I, Fontecha J, Hervás R, Bravo J. An ambulatory system for gait monitoring based on wireless sensorized insoles. Sensors 2015;15:16589–613.
  • [38] Demonceau M, Donneau AF, Croisier JL, Skawiniak E, Boutaayamou M, Maquet D, Garraux G. Contribution of a trunk accelerometer system to the characterization of gait in patients with mild-to-moderate Parkinson's disease. IEEE J Biomed Health Inform 2015;19:1803–8.
  • [39] Del Din S, Godfrey A, Rochester L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson's disease: toward clinical and at home use. IEEE J Biomed Health Inform 2016;20:838–47.
  • [40] Ferrari A, Ginis P, Hardegger M, Casamassima F, Rocchi L, Chiari L. A mobile kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE Trans Neural Syst Rehabil Eng 2016;24:764–73.
  • [41] Tunca C, Pehlivan N, Ak N, Arnrich B, Salur G, Ersoy C. Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors 2017;17(4).
  • [42] Martínez-Murcia FJ, Górriz JM, Ramírez J, Illán IA, Ortiz A. Automatic detection of Parkinsonism using significance measures and component analysis in DaTSCAN imaging. Neurocomputing 2014;126:58–70.
  • [43] Tang Y, Meng L, Wan C, Liu Z, Liao W, Yan X, Wang X, Tang B, Guo J. Identifying the presence of Parkinson's disease using low-frequency fluctuations in BOLD signals. Neurosci Lett 2017;645:1–6.
  • [44] Lee SH, Lim JS. Parkinson's disease classification using gait characteristics and wavelet-based feature extraction. Expert Syst Appl 2010;39(8):7338–44.
  • [45] Daliri MR. Chi-square distance kernel of the gaits for the diagnosis of Parkinson's disease. Biomed Signal Process Control 2013;8(1):66–70.
  • [46] Jane YN, Nehemiah HK, Arputharaj K. A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson's disease. J Biomed Inform 2016;60:169–76.
  • [47] Ertugrul OF, Kaya Y, Tekin R, Almali MN. Detection of Parkinson's disease by Shifted One Dimensional Local Binary Patterns from gait. Expert Syst Appl 2016;56: 156–63.
  • [48] Zeng W, Liu F, Wang Q, Wang Y, Mab L, Zhang Y. Parkinson's disease classification using gait analysis via deterministic learning. Neurosci Lett 2016;633:268–78.
  • [49] Acici K, Erdas CB, Asuroglu T, Toprak MK, Erdem H, Ogul H. A Random Forest method to detect Parkinson's Disease via gait analysis. In: Boracchi G, Iliadis L, Jayne C, Likas A, editors. Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Cham: Springer; 2017. p. 609–19.
  • [50] Perumal SV, Sankar R. Gait and tremor assessment for patients with Parkinson's disease using wearable sensors. Inf Commun Technol (ICT) Express 2016;2(4):168–74.
  • [51] Figo D, Diniz PC, Ferreira DR, Cardoso JMP. Preprocessing techniques for context recognition from accelerometer data. Pers Ubiquitous Comput 2010;14(7):645–62.
  • [52] Krishnan S, Athavale Y. Trends in biomedical signal feature extraction. Biomed Signal Process Control 2018;43:41–63.
  • [53] Wan X, Wang X, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14(135).
  • [54] Preece SJ, Goulermas JY, Kenney LPJ, Howard D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng 2009;56(3):871–9.
  • [55] Habib EAE. Correlation coefficients based on mean absolute deviation about median. Int J Stat Syst 2011;6(4):413–28.
  • [56] Celikoglu A, Tirnakli U. Skewness and kurtosis analysis for non-Gaussian distributions. Physica A 2018;499:325–34.
  • [57] Scharf LL. Statistical signal processing detection, estimation, and time series analysis. 1st ed. Pearson; 1991.
  • [58] Rihaczek A. Signal energy distribution in time and frequency. IEEE Trans Inf Theory 1968;14(3):369–74.
  • [59] Borges FAS, Fernandes RAS, Silva IN, Silva CBS. Feature extraction and power quality disturbances classification using smart meters signals. IEEE Trans Ind Inform 2016;12 (2):824–33.
  • [60] Boashash B. Digital control and signal processing systems and techniques. Academic Press; 1996 [Chapter 1].
  • [61] Ren Y, Zhang L, Suganthan PN. Ensemble classification and regression—recent developments, applications and future directions. IEEE Comput Intell Mag 2016;11(1):41–53.
  • [62] Casale P, Pujol O, Radeva P. Personalization and user verification in wearable systems using biometric walking patterns. Pers Ubiquitous Comput 2012;16(5): 563–80.
  • [63] Yurur O, Liu CH, Moreno W. Unsupervised posture detection by smartphone accelerometer. Electronics Letters 2013;49(8):562–4.
  • [64] Reed-Jones RJ, Powell DW. The effects of gaze stabilization on gait parameters in individuals with Parkinson's disease. Neurosci Lett 2017;655:156–9.
  • [65] Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
  • [66] Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recogn 2011;44:330–49.
  • [67] Atkeson CG, Moore AW, Schaal S. Locally weighted learning. Artif Intell Rev 1997;11(1):11–73.
  • [68] Englert P, Darmstadt T. Locally weighted learning. Seminar Class on Autonomous Learning Systems 2012.
  • [69] Gait in Parkinson's Disease. https://physionet.org/pn3/gaitpdb/ [accessed 05.05.18].
  • [70] Hausdorff JM, Balash J, Giladi N. Effects of cognitive challenge on gait variability in patients with Parkinson's disease. J Geriatr Psychiatry Neurol 2003;16(1):53–8.
  • [71] Bae J, Tomizuka M. Gait phase analysis based on a Hidden Markov Model. Mechatronics 2011;21:961–70.
  • [72] Bae J, Tomizuka M. A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor. Mechatronics 2013;23:646–51.
  • [73] Post B, Merkus MP, de Bie RMA, de Haan RJ, Speelman JD. Unified Parkinson's disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists ınterchangeable? Mov Disord 2005;20(12):1577–84.
  • [74] Bhidayasiri R, Tarsy D. Parkinson's disease: Hoehn and Yahr scale. Movement disorders: a video atlas. New York: Humana Press Springer Science+Business Media; 2012.
  • [75] Galna B, Lord S, Rochester L. Is gait variability reliable in older adults and Parkinson's disease? Towards an optimal testing protocol. Gait Posture 2013;37(4):580–5.
  • [76] Quinlan JR. C4.5: programs for machine learning. Morgan Kaufmann Publishers; 1993.
  • [77] Acharya TD, Lee DH, Yang IT, Lee JK. Identification of water bodies in a Landsat 8 OLI ımage using a J48 decision tree. Sensors 2016;16(7).
  • [78] Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KRK. Improvements to the SMO Algorithm for SVM Regression. IEEE Trans Neural Netw 2000;11(5):1188–93.
  • [79] Salman R, Kecman V. Regression as classification. Southeastcon Proceedings of IEEE; 2012.
  • [80] Frank E, Bouckaert RR. Conditional density estimation with class probability estimators. Advances in machine learning lecture notes in computer science, vol. 5828. Berlin: Heidelberg: Springer; 2009.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-64720814-2030-4b02-87e9-e6825b9bffff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.