Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 36, No. 4 | 547--552
Tytuł artykułu

Synthesis of NiO nanoparticles by sol-gel technique

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
NiO nanoparticles were fabricated by sol-gel route using ammonium hydroxide and nickel nitrate as precursors. The NiO nanoparticles were calcinated at 400 °C and 1000 °C. The nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), thermogravimetry analysis/differential thermal analysis (TGA/DTA). The structural properties were evaluated by X-ray diffraction (XRD). XRD confirmed the formation of well-crystallized and high purity NiO phase. The XRD showed that the peaks were sharpened and the crystallite size increased as the calcination temperature increased. The average crystallite size ranged from 12 nm to 20 nm, when calcined at temperatures 400 °C and 1000 °C, respectively. Fourier transform infrared spectroscopy (FT-IR) revealed the chemical composition and confirmed the formation of NiO nanoparticles. The nanoparticles showed paramagnetic behavior.
Słowa kluczowe
Wydawca

Rocznik
Strony
547--552
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Physics Department, Lahore College for Women University, Lahore-54000, Pakistan
autor
  • Center for Solid State Physics, University of the Punjab, Lahore-54590, Pakistan
autor
  • Center for Solid State Physics, University of the Punjab, Lahore-54590, Pakistan
Bibliografia
  • [1] Kamal H., Elmaghraby K.E., Ali A.S., Abdelhady K., J. Cryst. Growth, 262 (2004), 424.
  • [2] He J., Lindstrom H., Hagfeldt A., Lindquist E.S., J. Phys. Chem. B, 103 (1999), 8940.
  • [3] Yoshimura K., Miki T., Tanemura S., Jpn. J. Appl. Phys., 34 (1995), 2440.
  • [4] Liu K., Anderson M., J. Electrochem. Soc., 143 (1966), 124.
  • [5] Hotovy I., Rehacek V., Siciliano P., Capone S., Spiess L., Thin Solid Films, 418 (2002), 9.
  • [6] Cook G.J., Koffyberg P.F., Sol. Energ. Mater., 10 (1984), 55.
  • [7] Makkus C.R., Hemmes K., Wit D.W.H.J., J. Electrochem. Soc., 141 (1994), 3429.
  • [8] Chan M.I., Hsu Y.T., Hong C.F., Appl. Phys. Lett., 81 (2002), 1899.
  • [9] Derakhshi M., Jamali T., Elyasi M., Bijad M., Sadeghi R., Kamali A., Niazazari K., Shahmiri R.M., Bhari A., Mokhtari S., Int. J. Electrochem. Sc., 8 (2013), 8252.
  • [10] Khansari A., Enhessari M., Niasari S.M., J. Clust. Sci., 24 (2013), 289.
  • [11] Alagiri M., Ponnusamy S., Muthamizhchelvan C., J. Mater. Sci. Mater. El., 23 (2012), 728.
  • [12] Jahromi P.S., Huang M.N., Muhamad R.M., Lim N.H., Ceram. Int., 39 (2013), 3909.
  • [13] Mallick P., Rath C., Biswal R., Mishra C.N., Mishra C.N., Indian J. Phys., 83 (2009), 517.
  • [14] Alias S.S., Ismail B.A., Mohamad A.A., J. Alloy. Compd., 499 (2010), 231.
  • [15] Jenkins R., Snyder L.R., Introduction to X-ray Powder Diffractometry, John Wiley & Sons, New Jersey, 1996.
  • [16] Comini E., Faglia G., Sberveglieri G., Pan Z., Wang L.W., Appl. Phys. Lett., 81 (2012), 1869.
  • [17] Aliahmad M., Noori M., Indian J. Phys., 87 (2013), 43.
  • [18] Zorkipli M.N.N., Kaus M.H.N., Mohamad A.A., Procedia Chem., 19 (2016), 626.
  • [19] Gandhi C.A., Cheng H.-Y., Chang Y.-M., Lin G.J., Mater. Res. Express, 3 (3) (2016), 035017.
  • [20] El-Kamray M., Nagy N., El-Mehasseb I., Mat. Sci. Semicon. Proc., 16 (6) (2013), 1747.
  • [21] Nassar N.N., Hassan A., Almao P.P., Appl. Catal. A-Gen., 462 – 463 (2013), 116.
  • [22] Kalam A., Al-Shihri S.A., Shakir M., Elbindary A.A., Yousef S.E., Du G., Synth. React. Inorg. M., 41 (2011), 1324.
  • [23] Al-Sehemi G.A., Al-Shihri S.A., Kalam S.A., Du G., Ahmad T., J. Mol. Struct., 1058 (2014), 56.
  • [24] Anandan K., Rajendran V., IJNN., 2 (4) (2012), 24.
  • [25] Mendoza-Galvan A., Vidales-Hurtado A., Lopez-Beltran M.A., Thin Solid Films, 517 (2009), 3115.
  • [26] Makhlouf A.S., Kaseem A.M., Abdel-Rahim A.M., Optoelectron. Adv. Mat., 4 (2010), 1562.
  • [27] Zatsepin F.A., Kuznetsova A.Y., Sokolov I.V., J. Lumin., 183 (2017), 135.
  • [28] Mcgill C.T., Collins A.D., Semicond. Sci. Tech., 8 (1993), Sl.
  • [29] Wang X.-L., Dou X.S., Zhang C., NPG Asia Mater., 2 (2010), 31.
  • [30] Ahmed T., Ramanujachary V.K., Lofland E.S., Ganguli K.A., Solid State Sci., 8 (2006), 425.
  • [31] Lu A.H., Salabas E.L., Schuth F., Angew. Chem. Int. Edit., 46 (2007), 1222.
  • [32] Mourdikoudis S., Simeonidis K., Vilaltaclemente A., Tuna F., Tsiaoussis I., Angelakeris M., Dendrinou-Samara C., Kalogirou O., J. Magn. Magn. Mater., 321 (2009), 2723.
  • [33] Gandhi C.A., Lin G.J., J. Magn. Magn. Mater., 424 (2017), 221.
  • [34] Lima A.T.A., Dantas L.A., Almeida S.N., J. Magn. Magn. Mater., 425 (2017), 72.
  • [35] Nadeem K., Ullah A., Mushtaq M., Kamran M., Hussain S.S., Mumtaz M., J. Magn. Magn. Mater., 417 (2016), 6.
  • [36] Dave S.R., Gao X.H., WIRES Nanomed. Nanobi., 1 (2009), 583.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-643069ae-1e43-46f0-b296-43fc9bb43221
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.