Czasopismo
2023
|
Vol. 64, Nr 8
|
34--44
Tytuł artykułu
Autorzy
Kasprowicz, Grzegorz
Kulik, Paweł
Poźniak, Krzysztof
Harty, Tom
Balance, Chris
Balance, Tim
Bourdeauducq, Sébastien
Jördens, Robert
Allcock, David
Nadlinger, David
Britton, Joseph W.
Wawrzyniak, Zbigniew
Slichter, Daniel
Ospelkaus, Christian
Kozakiewicz, Paweł
Brown, Ken
Hanasz, Stanisław
Kamińska, Anna
Kiepiela, Marcin
Matyas, Jakub
Mizrahi, Jonathan
Przybysz, Maciej
Risinger, Drew
Sotirova, Ana
Sowiński, Mikołaj
Zhang, Weida
Warianty tytułu
Oprzyrządowanie typu open-source do kontroli eksperymentów w kwantowym przetwarzaniu informacji i fizyce wysokich energii
Języki publikacji
Abstrakty
Sinara is a modular, open-source measurement and control hardware ecosystem designed for beam-steering and quantum information processing applications that require deterministic high-precision timing. The Sinara system is based on industrial standards and comprises over 70 digital and analog input and output modules. The hardware is controlled and managed by ARTIQ, an open-source software system for experimental control that provides nanosecond timing resolution and sub-microsecond latency via a high-level programming language.
Sinara to modułowa, typu „open-source”, platforma sprzętowo-programistyczna do pomiarów i kontroli, zaprojektowana dla zastosowań w akceleratorach cząstek i przetwarzaniu informacji kwantowej, które wymagają deterministycznego, precyzyjnego timingu. System Sinara opiera się na standardach przemysłowych i składa się z ponad 70 modułów cyfrowych i analogowych wejść i wyjść. Sprzęt jest kontrolowany i zarządzany przez ARTIQ, open-source’owe oprogramowanie do kontroli eksperymentów, które zapewnia rozdzielczość timingu na poziomie nanosekund i latencję w sub-mikrosekundach za pośrednictwem języka programowania wysokiego poziomu.
Rocznik
Tom
Strony
34--44
Opis fizyczny
Bibliogr. 76 poz., fot.
Twórcy
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- Oxford Ionics, Kidlington, United Kingdom
autor
- Oxford University, Oxford, United Kingdom
autor
- ColdQuanta, Boulder, United States
autor
- Mlabs Limited, Hong Kong, China
autor
- Quartiq GmbH, Berlin, Germany
autor
- University of Oregon, Eugene, United States
autor
- Oxford University, Oxford, United Kingdom
autor
- University of Maryland, Maryland, United States
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- NIST Boulder Laboratories, Boulder, United States
autor
- Leibniz University Hannover, Germany
autor
- Technosystems Sp. z o.o. Kolonia Lesznowola, Poland
autor
- Duke University, Durham, United States
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- Creotech Instruments S.A., Piaseczno, Poland
autor
- Technosystems Sp. z o.o. Kolonia Lesznowola, Poland
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- Oxford Ionics, Kidlington, United Kingdom
autor
- Technosystems Sp. z o.o. Kolonia Lesznowola, Poland
autor
- University of Maryland, Maryland, United States
autor
- Oxford University, Oxford, United Kingdom
autor
- Warsaw University of Technology, Warsaw, Poland
autor
- Oxford University, Oxford, United Kingdom
Bibliografia
- [1] Negnevitsky, V. Feedback-stabilised quantum states in a mixed-species ion system. PhD thesis, ETH Zürich, 2018.
- [2] Mount, E.; Gaultney, D.; Vrijsen, G.; Adams, M.; Baek, S.Y.; Hudek, K.; Isabella, L.; Crain, S.; van Rynbach, A.; Maunz, P.; et al. Scalable digital hardware for a trapped ion quantum computer. Quantum Information Processing 2016, 15, 5281-5298. https://doi.org/10.1007/s11128-015-1120-z
- [3] Langer, C.E. High Fidelity Quantum Information Processing with Trapped Ions. PhD thesis, University of Colorado at Boulder, 2006.
- [4] https://github.com/nist-ionstorage/ionizer
- [5] https://github.com/pyIonControl/IonControl
- [6] https://sourceforge.net/projects/pulse-sequencer/
- [7] Keshet, A.; Ketterle, W. A distributed, graphical user interface based, computer control system for atomic physics experiments. Review of Scientific Instruments 2013, 84, 015105, [https://doi. org/10.1063/1.4773536]. https://doi.org/10.1063/1.4773536.
- [8] Bertoldi, A.; Feng, C.H.; Eneriz, H.; Carey, M.; Naik, D.S.; Junca, J.; Zou, X.; Sabulsky, D.O.; Canuel, B.; Bouyer, P.; et al. A control hardware based on a field programmable gate array for experiments in atomic physics. Review of Scientific Instruments 2020, 91, 033203, [https://doi.org/10.1063/1.5129595]. https:// doi.org/10.1063/1.5129595.
- [9] Donnellan, S.; Hill, IR; Bowden, W.; Hobson, R. A scalable arbitrary waveform generator for atomic physics experiments based on field-programmable gate array technology. Review of Scientific Instruments 2019, 90, 043101, [https://doi. org/10.1063/1.5051124], https://doi.org/10.1063/1.5051124.
- [10] Gaskell, P.E.; Thorn, J.J.; Alba, S.; Steck, D.A. An opensource, extensible system for laboratory timing and control. Review of Scientific Instruments 2009, 80, 115103, [https://doi. org/10.1063/1.3250825]. https://doi.org/10.1063/1.3250825
- [11] Malek, B.S.; Pagel, Z.; Wu, X.; Müller, H. Embedded control system for mobile atom interferometers. Review of Scientific Instruments 2019, 90, 073103, [https://doi.org/10.1063/1.5083981]. https://doi.org/10.1063/1.5083981
- [12] Perego, E.; Pomponio, M.; Detti, A.; Duca, L.; Sias, C.; Calosso, C.E. A scalable hardware and software control apparatus for experiments with hybrid quantum systems. Review of Scientific Instruments 2018, 89, 113116, [https://doi. org/10.1063/1.5049120], https://doi.org/10.1063/1.5049120.
- [13] Pruttivarasin, T.; Katori, H. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms. Review of Scientific Instruments 2015, 86, 115106, [https://aip.scitation.org/doi/ pdf/10.1063/1.4935476], https://doi.org/10.1063/1.4935476.
- [14] Qin, X.; Zhang, W.; Wang, L.; Zhao, Y.; Tong, Y.; Rong, X.; Du, J. An FPGA-Based Hardware Platform for the Control of Spin-Based Quantum Systems. IEEE Transactions on Instrumentation and Measurement 2020, 69, 1127-1139, https://doi. org/10.1109/TIM.2019.2910921
- [15] http://www.strontiumbec.com/Control/Control.html, 2015.
- [16] https://github.com/sinara-hw/meta/wiki/EEM
- [17] https://github.com/sinara-hw/CompactPCISerial_EEM_Adapter/wiki
- [18] https://github.com/sinara-hw/CompactPCISerial_Kasli_Adapter
- [19] https://ohwr.org/cernohl
- [20] Kulik, P.; Kasprowicz, G.; Gąska, M.: Driver module for quantum computer experiments: Kasli. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 10808, 1255-1258.
- [21] https://github.com/sinara-hw/Kasli/wiki
- [22] https://github.com/sinara-hw/Kasli-SOC/wiki
- [23] https://github.com/sinara-hw/VHDCI_Carrier/wiki
- [24] https://github.com/sinara-hw/Metlino/wiki
- [25] https://github.com/sinara-hw/STM_Sys_Board/wiki
- [26] https://ohwr.org/project/diot-sb-zu/wikis/home
- [27] https://github.com/sinara-hw/Sampler/wiki
- [28] https://github.com/elhep/FMC_ADC100M_10B_TDC_16cha/wiki
- [29] https://github.com/sinara-hw/EEM_FMC_Carrier/wiki
- [30] https://ohwr.org/project/diot-pfc-ku/wikis/home
- [31] https://ohwr.org/project/fmc-adc-100m14b4cha/wikis/home
- [32] https://github.com/sinara-hw/Zotino/wiki
- [33] https://github.com/sinara-hw/Fastino/wiki
- [34] https://github.com/sinara-hw/Shuttler/wiki
- [35] https://github.com/sinara-hw/Shuttler/wiki
- [36] https://github.com/m-labs/artiq/issues/788
- [37] https://github.com/sinara-hw/Stabilizer/wiki
- [38] https://github.com/sinara-hw/Pounder/wiki
- [39] https://github.com/sinara-hw/Stabilizer_Piezo_Driver/wiki
- [40] https://github.com/sinara-hw/Fast_Servo/wiki
- [41] https://github.com/sinara-hw/Thermostat/wiki
- [42] https://github.com/sinara-hw/Thermostat_EEM/wiki
- [43] https://github.com/sinara-hw/DIO_BNC/wiki
- [44] https://github.com/sinara-hw/DIO_SMA/wiki
- [45] https://github.com/sinara-hw/DIO_MCX/wiki
- [46] https://github.com/sinara-hw/DIO_MCX_Isolated
- [47] https://github.com/sinara-hw/DIO_RJ45/wiki.
- [48] https://github.com/sinara-hw/Banker/wiki.
- [49] https://github.com/sinara-hw/Humpback/wiki.
- [50] https://github.com/airwoodix/sinara-humpback-notes.
- [51] https://git.m-labs.hk/M-Labs/humpback-dds.
- [52] https://github.com/sinara-hw/Grabber/wiki.
- [53] https://github.com/sinara-hw/DiPho/wiki.
- [54] Allcock, D.; et al. Open-source multi-channel Smart Arbitrary Waveform Generators (SAWG) for quantum information processing, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 2021.
- [55] https://github.com/sinara-hw/Sayma_AMC/wiki.
- [56] https://github.com/sinara-hw/Sayma_RTM/wiki.
- [57] https://github.com/sinara-hw/Phaser/wiki.
- [58] https://github.com/sinara-hw/RFSOC-AMC/wiki.
- [59] https://github.com/sinara-hw/Urukul/wiki.
- [60] Kasprowicz, G.; Harty, T.; Bourdeauducq, S.; Jördens, R.; Allcock, D.; Nadlinger, D.; Britton, J.; Sotirova, A.; Nowicka, D. Urukul–open-source frequency synthesiser module for quantum physics. International Journal of Electronics and Telecommunications, 2022, 68, 123-128.
- [61] https://github.com/sinara-hw/mirny/wiki.
- [62] https://github.com/sinara-hw/Almazny/wiki.
- [63] https://github.com/sinara-hw/Booster/wiki.
- [64] https://github.com/sinara-hw/Booster/wiki.
- [65] https://github.com/sinara-hw/SiLPA_HL/wiki.
- [66] https://github.com/sinara-hw/SiLPA_HE/wiki.
- [67] https://github.com/sinara-hw/ZHL_RF_AMP_3U/wiki.
- [68] https://github.com/sinara-hw/HV_AMP_8CH/wiki.
- [69] https://github.com/sinara-hw/HVAMP_32/wiki.
- [70] https://github.com/sinara-hw/EEM_PWR_MOD_AC/wiki.
- [71] https://github.com/sinara-hw/AUX_PSU/wiki.
- [72] https://github.com/sinara-hw/PSU_HV_ISOL/wiki.
- [73] https://github.com/sinara-hw/SMA_IDC_Adapter/wiki.
- [74] https://github.com/sinara-hw/BNC_IDC/wiki.
- [75] https://github.com/sinara-hw/IDC_MCX_Adapter/wiki.
- [76] https://github.com/sinara-hw/IDC_HD68_Adapter/wiki.
Uwagi
This work was partially supported by the National Centre for Research and Development of Poland grant NESTER (MAZOWSZE/0153/1900). The work is part-financed by the European Union from the European Regional Development Fund, Smart Growth Development Operational Program 2014-2020.
The project “Electronics in response to the challenges posed by Quantum Technologies” is carried out as part of Fast Track, a competition run by the National Centre for Research and Development. We want to thank the entire Sinara and ARTIQ community, without whom this project would not exist.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6402be99-baaa-4566-9357-7c51614d3ce1