Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 8 | 33--42
Tytuł artykułu

Biopolishing of Domestic Wastewater Using Polyvinyl Alcohol – Supported Biofilm of Bacterial Strain Bacillus velezensis Isolate JB7

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water pollution occurs due to the discharge of domestic waste mixed with residential, industrial, commercial, and agricultural wastewater. Conventional water treatment methods using aerobic/anaerobic methods can cause problems with the production of high green gases and result in the greenhouse effect. Microbial-based domestic sewage treatment technology using polyvinyl alcohol biofilm supporting media was introduced as an alternative measure to overcome this problem. The objective of the study was to determine the performance of polyvinyl alcohol beads in polishing domestic wastewater. In this study, the bacterium Bacillus velezensis isolate JB7 was used together with PVA as a raw material to treat domestic sewage wastewater more efficiently and stably. The results of the study show the effectiveness of domestic wastewater treatment in several factors such as pH value, chemical oxygen demand, phosphorus, nitrate, nitrite, ammonia, and total suspended solids. As conclusion, domestic wastewater treatment methods using polyvinyl alcohol beads are seen to be effective, reducing the use of sewage waste plant construction sites and able to avoid the use of non-recyclable materials such as plastics and synthetics.
Wydawca

Rocznik
Strony
33--42
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Chemical Engineering and Process, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Department of Chemical Engineering and Process, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia, hassimi@ukm.edu.my
  • Research Centre for Sustainable Process Technology (CESPRO), Universiti Sains Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Department of Chemical Engineering and Process, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Department of Chemical Engineering, College of Engineering And Petroleum, Hadhramout University,Mukalla, Hadhramout, Yemen
Bibliografia
  • 1. Abdel-Raouf N., Al-Homaidan A.A., Ibraheem I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.
  • 2. Agunbiade M., Oladipo B., Ademakinwa A.N., Awolusi O.., Adesiyan IM., Oyekola O., Ololade O., Ojo A. 2022. Biofocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Scientific Reports, 12, 10945.
  • 3. Al-Ajalin F.A.H., Idris M., Abdullah S..RS., Kurniawan S.B., Imron M.F. 2020. Evaluation of short-term pilot reed bed performance for real domestic wastewater treatment. Environmental Technology & Innovovation, 20, 101110.
  • 4. Alias J., Hasan H.A., Abdullah S.R..S, Othman A.R. 2022. Properties of bioflocculant-producing bacteria for high flocculating activity efficiency. Environmental Technology & Innovation, 27, 102529.
  • 5. APHA 2012. Standard Methods for examination of water and wastewater. 22nd ed. American Public Health Association, Washington, pg., 1360.
  • 6. Chen M., Wang W., Feng Y., Zhu X., Zhou H., Tan Z., Li X. 2014. Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium Aeromonas sp. HN-02. Bioresource Technology, 167, 456–461.
  • 7. Chen P., Li J., Li Q.X., Wang Y.., Li S., Ren T, Wang L. 2012. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresource Technology, 116, 266–270.
  • 8. Chen Q., Ni J. 2012. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification–aerobic denitrification. Journal of Bioscience and Bioengineering, 113(5), 619–623.
  • 9. Deng J., Jia M., Zeng Y.Q., Li W., He J.T., Ren J., Bai J., Zhang L., Li J., Yang S. 2022. Enhanced treatment of organic matter in slaughter wastewater through live Bacillus velezensis strain using nano zinc oxide microsphere. Environmental Pollution, 292, 118306.
  • 10. Hasan H.A., Abdullah S.R.S.., Kofli N.T., Kamarudin S.K. 2012. Effective microbes for simultaneous bio-oxidation of ammonia and manganese in biological aerated filter system. Bioresource Technology, 24, 355–363.
  • 11. Hasan H.A., Muhamad M.H., Ismail N.I. 2020. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33, 101035.
  • 12. He L., Tan T., Gao Z., Fan L. 2019. The shock effect of inorganic suspended solids in surface runoff on wastewater treatment plant performance. International Journal of Environmental Research and Public Health, 16(3), 453.
  • 13. Herlina N., Turmuzi L.M, Husin A., Putri I. 2019. Studies on decreasing Chemical Oxygen Demand (COD) on artificial laundry wastewater using anaerobic-aerobic biofilter dipped with bio ball media. MATEC Web of Conferences, 276, 06015.
  • 14. Hoa T.T.H., Khanh L.N., Zhijun L., Fujii T., Rouse J..D, Furukawa K. 2006. Nitrogen removal by immobilized anammox sludge using PVA gel as biocarrier. Japanese Journal of Water Treatment Biology, 42(3), 139–149.
  • 15. Hong P.., Wu X, Shu Y., Wang C., Tian C., Wu H., Xiao B. 2020. Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor. Bioresource Technology, 303, 122905.
  • 16. Jain S.K., Singh V.P. 2003. Water quality modeling. In: Developments in Water Science, 51, 743–786.
  • 17. Khalid A.A.H.., Yaakob.Z, Abdullah S.RS.., Takriff MS. 2016. Enhanced growth and nutrients removal efficiency of Characium sp. cultured in agricultural wastewater via acclimatized inoculum and effluent recycling. Journal of Environmental Chemical Engineering, 4(3), 3426–3432.
  • 18. Li C., Yang J., Wang X., Wang E., Li B., He R., Yuan H. 2015. Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresource Technology, 182, 18–25.
  • 19. Li C., Yue Z., Feng F., Xi C., Zang H., An X., Liu K. 2016. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability. Chemosphere, 161, 224–232.
  • 20. Li C.Y., Li Y., Cheng X.S., Feng L.P., Xi C.W., Zhang Y. 2013. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile degrading bacterium) with biofilmforming bacteria for wastewater treatment. Bioresource Technology, 131, 390–396.
  • 21. Macwilliams M.P., Liao M. 2006. Luria broth (LB) and luria agar (LA) media and their uses protocol resource type. American Society for Microbiology, 7–9.
  • 22. Mao Y., Quan X., Zhao H., Zhang Y., Chen S., Liu T., Quan W.. 2017. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers. Chemical Engineering Journal, 315, 364–372.
  • 23. Mukred A.M., Hamid A.A., Hamzah A., Yusoff W.M.W. 2008. Growth enhancement of effective microorganisms for bioremediation of crude oil contaminated waters. Pakistan Journal of Biological Sciences, 11, 1708–1712.
  • 24. Qu D, Wang C, Wang Y, Zhou R, Ren H. 2015. Heterotrophic nitrification and aerobic denitrification by a novel groundwater origin cold-adapted bacterium at low temperatures. RSC Adv., 5(7), 514925157.
  • 25. Rajpal A., Srivastava G., Bhatia A., Singh J., Ukai Y., Kazmi A.A. 2021. Optimization to maximize nitrogen removal and microbial diversity in PVA-gel based process for treatment of municipal wastewater. Environmental Technology & Innovation, 21, 101314.
  • 26. Ren Y-X., Yang L., Liang X. 2014. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 171, 1–9.
  • 27. Rickard A.H., Gilbert P., Handley P.S. 2004. Influence of growth environment on coaggregation between freshwater biofilm bacteria. Applied Microbiology, 96, 1367–1373.
  • 28. Robertson L.A., Kuenen J.G. 1984. Aerobic denitrification: a controversy revived. Archives of Microbiology, 139(4), 351–354.
  • 29. Rout P.R., Bhunia P.., Dash R.R. 2017. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 244, 484–495.
  • 30. Sun L., Wang J., Liang J., Li G. 2020. Boric acid cross-linked 3d polyvinyl alcohol gel beads by naoh-titration method as a suitable biomass immobilization matrix. Journal of Polymers and the Environment, 28(2), 532–541.
  • 31. Verma M., Ekka A., Mohapatra T., Ghosh P. 2020. Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. Journal of Environmental Chemical Engineering, 8, 104270.
  • 32. Wehrfritz J.-M, Reilly A., Spiro S., Richardson D.J. 1993. Purification of hydroxylamine oxidase from Thiosphaera pantotropha: Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Letters, 335(2), 246–250.
  • 33. Yaakob Z.A. 2014. Menangani Krisis Alam Sekitar : Pendekatan Falsafah Seyyed Hossein Nasr. Tesis Ijazah Doktor Falsafah. Universiti Sains Malaysia. http://eprints.usm.my/29036/1/menangani_krisis_alam_sekitar_-_pendekatan.pdf.
  • 34. Zainuddin N.A., Din M.F.M., Nuid M., Halim K..A, Salim N..AA., Elias S.H., Lazim Z.M. 2022. The phytoremediation using water hyacinth and water lettuce: correlation between sugar content, biomass growth rate, and nutrients. Jurnal Kejuruteraan, 34(5), 915–924.
  • 35. Zajic J.E., Supplisson B. 1972. Emulsification and degradation of “Bunker C” fuel oil by microorganisms. Biotechnology and Bioengineering, 14(3), 331–343.
  • 36. Zheng H-Y., Liu Y.., Gao X-Y., Ai G-M., Miao L-L., Liu Z-P. 2012. Characterization of a marine origin aerobic nitrifying–denitrifying bacterium. Journal of Bioscience and Bioengineering, 114(1), 33–37.
  • 37. Zulkifli M., Hasan H.A., Abdullah S.R.S., Muhamad M.H. 2022. A review of ammonia removal using a biofilm-based reactor and its challenges. Journal of Environmental Management, 315, 115162.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-63fc9e3b-7072-43ae-8766-3aa3c7b72d5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.