Czasopismo
2022
|
Vol. 22, no. 4
|
art. no. e189, 2022
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the particle size distribution (PSD) of class F and C fly ash (FA) was optimized using theory of the Fuller-Thompson. After defining the optimal size distribution, the distribution modulus (q) of 0.4 yields the best mechanical property results. The freeze–thaw up to 300 cycles on mechanical and permeability properties of 90-day cementitious composites incorporating optimized class F and C fly ash (5, 10, 15, 20, 25, and 30% by weight of cement) were investigated. Optimized FA has improved the mechanical and permeability properties of cementitious composites under freeze–thaw cycling by ensuring a better filler effect. The cementitious composite mortars with 20% optimized class C fly ash and class F fly ash replacement yielded high compactness and better mechanical properties than the control cementitious composite mortars without any fly ash replacement after 90 days. Finding the best particle size distribution of FA providing high compactness will save cement, reduce the carbon dioxide (CO2) emission that pollutes the environment in cement production, and contribute to the economy and environment.
Czasopismo
Rocznik
Tom
Strony
art. no. e189, 2022
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, Kırıkkale University, 71451 Kırıkkale, Turkey, ildemir@kku.edu.tr
autor
- Department of Construction Technology, Kırıkkale University, 71451 Kırıkkale, Turkey, ahmetfilazi@kku.edu.tr
autor
- Department of Civil Engineering, Kırıkkale University, 71451 Kırıkkale, Turkey, ozersevim@kku.edu.tr
autor
- Department of Civil Engineering, Gazi University, 06560 Ankara, Turkey, simsek@gazi.edu.tr
Bibliografia
- [1] ASTM C618–19. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in Concrete. West Conshohocken: ASTM International; 2019. https:// doi. org/ 10. 1520/C0618-19.
- [2] Malhotra VM, Mehta PK. Pozzolanic and Cementitious Materials. Amsterdam: Gordon & Breach Publishers; 2014. https://doi.org/10.1201/9781482296761.
- [3] Mehta PK, Monteiro PJM. Concrete: Microstructure, Properties, and Materials (4th edition). New York: McGraw-Hill; 2014. https://doi.org/10.1036/0071462899.
- [4] Neville AM. Properties of concrete. 5th ed. London: Pearson; 2011.
- [5] Wang W, Lu C, Yuan G, Zhang Y. Effects of pore water saturation on the mechanical properties of fly ash concrete. Constr Build Mater. 2017;130:54–63. https://doi.org/10.1016/j.conbuildmat.2016.11.031.
- [6] Singh N, Singh SP. Carbonation resistance and microstructural analysis of low and high volume fly ash self compacting concrete containing recycled concrete aggregates. Constr Build Mater. 2016;127:828–42. https://doi.org/10.1016/j.conbuildmat.2016.10.067.
- [7] Lane RO, Best JF. Properties and use of fly ash in Portland cement concrete. Con Int. 1982;4(7):81–92.
- [8] Shaikh FU, Supit SW. Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Constr Build Mater. 2015;82:192–205. https://doi.org/10.1016/j.conbuildmat.2015.02.068.
- [9] Slanička S. The influence of fly ash fineness on the strength of concrete. Cem Concr Res. 1991;21(2–3):285–96. https://doi.org/10.1016/0008-8846(91)90010-F.
- [10] Monzo J, Paya J, Peris-Mora E. A preliminary study of fly ash granulometric influence on mortar strength. Cem Concr Res. 1994;24(4):791–6. https:// doi. org/ 10. 1016/ 0008- 8846(94)90204-6.
- [11] Erdoğdu K, Türker P. Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cem Concr Res. 1998;28(9):1217–22. https:// doi. org/ 10. 1016/ S0008- 8846(98)00116-1.
- [12] Lee SH, Kim HJ, Sakai E, Daimon M. Effect of particle size distribution of fly ash–cement system on the fluidity of cement pastes. Cem Concr Res. 2003;33(5):763–8. https:// doi. org/ 10.1016/S0008-8846(02)01054-2.
- [13] Bentz DP, Ferraris CF, Filliben JJ. Optimization of particle sizes in high volume fly ash blended cements. Washington DC: US Department of Commerce, National Institute of Standards and Technology; 2011.
- [14] Bentz DP, Hansen AS, Guynn JM. Optimization of cement and fly ash particle sizes to produce sustainable concretes. Cem Concr Compos. 2011;33(8):824–31. https:// doi. org/ 10. 1016/j. cemconcomp.2011.04.008.
- [15] Mueller FV, Wallevik OH, Khayat KH. Linking solid particle packing of Eco-SCC to material performance. Cem Concr Compos. 2014;54:117–25. https:// doi. org/ 10. 1016/j. cemco ncomp. 2014.04.001.
- [16] Wang XH, Wang KJ, Taylor P, Morcous G. Assessing particle packing based self-consolidating concrete mix design method. Constr Build Mater. 2014;70:439–52. https://doi.org/10.1016/j.conbuildmat.2014.08.002.
- [17] Yu R, Spiesz P, Brouwers HJH. Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixture uses. Cem Concr Comp. 2015;55:383–94. https://doi.org/10.1016/j.cemconcomp.2014.09.024.
- [18] Yu R, Spiesz P, Brouwers HJH. Development of ultra-high performance fibre reinforced concrete (UHPFRC): towards an efficient utilization of binders and fibres. Const Build Mat. 2015;79:273–82. https://doi.org/10.1016/j.conbuildmat.2015.01.050.
- [19] Sevim Ö, Demir İ. Optimization of fly ash particle size distribution for cementitious systems with high compactness. Constr Build Mater. 2019;195:104–14. https://doi.org/10.1016/j.conbuildmat.2018.11.080.
- [20] Sevim Ö, Demir İ. Physical and permeability properties of cementitious mortars having fly ash with optimized particle size distribution. Cem Concr Compos. 2019;96:266–73. https://doi.org/10.1016/j.cemconcomp.2018.11.017.
- [21] TS EN 197–1. Cement–part 1: composition, specifications and conformity criteria for common cements. Ankara: Turkish Standard Institution; 2012.
- [22] TS EN 196–1. Methods of testing cement–Part 1: Determination of strength. Ankara: Turkish Standard Institution; 2016.
- [23] Fuller WB, Thompson SE. The laws of proportioning concrete. Trans Am Soc Civ Eng. 1907;33:222–98. https://doi.org/10.1061/TACEAT.0001979.
- [24] ASTM C597–16. Standard test method for pulse velocity through concrete. West Conshohocken: ASTM International; 2016. https://doi.org/10.1520/C0597-16.
- [25] ASTM C666/C666M-15. Standard test method for resistance of concrete to rapid freezing and thawing. West Conshohocken:ASTM International; 2015. https:// doi. org/ 10. 1520/ C0666_C0666M-15.
- [26] ASTM C642–21. Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken: ASTM International; 2021. https://doi.org/10.1520/C0642-21.
- [27] ASTM D4404–18. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. West Conshohocken: ASTM International; 2018. https://doi.org/10.1520/D4404-18.
- [28] ASTM C1202–22. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. West Conshohocken: ASTM International; 2022. https://doi.org/10.1520/C1202-22.
- [29] Filazi A, Demir İ, Sevim O. Enhancement on mechanical and durability performances of binary cementitious systems by optimizing particle size distribution of fly ash. Arch Civ Mech Eng. 2020;20(2):58. https://doi.org/10.1007/s43452-020-00061-x.
- [30] Demir İ, Sivrikaya B, Sevim O, Baran M. A study on ASR mitigation by optimized particle size distribution. Constr Build Mater. 2020;261:120492. https://doi.org/10.1016/j.conbuildmat.2020.120492.
- [31] Saha AK. Effect of class F fly ash on the durability properties of concrete. Sustain Environ Res. 2018;28(1):25–31. https://doi.org/10.1016/j.serj.2017.09.001.
- [32] Uysal M, Akyuncu V. Durability performance of concrete incorporating Class F and Class C fly ashes. Constr Build Mater. 2012;34:170–8. https://doi.org/10.1016/j.conbuildmat.2012.02.075.
- [33] Neville AM, Brooks JJ. Concrete technology. London: Longman Scientific and Technical; 1987.
- [34] Jones R, Gatfield EN. Testing concrete by an ultrasonic pulse technique. London: DSIR Road Research Tech. Paper No. 34; 1955.
- [35] Zhao H, Qin X, Liu J, Zhou L, Tian Q, Wang P. Pore structure characterization of early-age cement pastes blended with high-volume fly ash. Constr Build Mater. 2018;189:934–46. https://doi.org/10.1016/j.conbuildmat.2018.09.023.
- [36] Yu Z, Ni C, Tang M, Shen X. Relationship between water permeability and pore structure of Portland cement paste blended with fly ash. Constr Build Mater. 2018;175:458–66. https://doi.org/10.1016/j.conbuildmat.2018.04.147.
- [37] Zeng Q, Li K, Fen-Chong T, Dangla P. Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data. Cem Concr Compos. 2012;34(9):1053–60. https://doi.org/10.1016/j.cemconcomp.2012.06.005.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-63f635cd-6fd8-4b30-95a2-681cbbce084d