Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This paper presents an analysis of the structure and physicochemical properties of coatings based on an organofunctional silane (VTMS), a conductive polymer (PEDOT), and a surfactant (polyoxyethylene glycol monolauryl ether BRIJ). Design/methodology/approach The coatings were deposited on X20Cr13 stainless steel and glassy carbon specimens using sol-gel immersion. The obtained coatings were characterised in terms of topography, microstructure, roughness, adhesion to the steel substrate, thickness, and corrosion resistance. Corrosion tests were conducted in sulfate environments with pH = 2 without or with the addition of Cl- ions. Findings: The use of different surfactant concentrations in the modifying solution is intended to improve the deposition efficiency and increase the degree of dispersion of silane and conducting polymer. Research limitations/implications The tested coatings were found to slow down the corrosion of the steel substrate, thus effectively protecting it from this phenomenon. The use of a surfactant compound is intended to increase the degree of dispersion of silane and polymer in the modifying solution to improve deposition efficiency. Practical implications: Test carried out in corrosive media have shown that the coatings proposed in the above work, based on VTMS silane, PEDOT polymer and BRIJ surfactant, significantly increase the corrosion resistance of the tested materials, which confirms their effectiveness and possibility of application in various industries. Originality/value: The novelty of this paper is the use of silane (VTMS), polymer (PEDOT) and surfactant (BRIJ) as components of the anticorrosion coating.
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Department of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland, lidia.adamczyk@pcz.pl
autor
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, ul. Ludwika Pasteura 1, 02-093 Warszawa, Poland
Bibliografia
- 1. L. Adamczyk, A. Pietrusiak, H. Bala, Corrosion resistance of stainless steel covered by 4-aminobenzoic acid films, Open Chemistry 10/5 (2012) 1657-1668. DOI: https://doi.org/10.2478/s11532-012-0082-6
- 2. R. Jeyaram, A. Elango, T. Siva, A. Ayeshamariam, K. Kaviyarasu, Corrosion protection of silane based coatings on mild steel in an aggressive chloride ion environment, Surfaces and Interfaces 18 (2020) 100423. DOI: https://doi.org/10.1016/j.surfin.2019.100423
- 3. L. Adamczyk, P. Kulesza, Application of poly(3,4-etylenedioxythiophene) and 4-(pyr role-1-yl) benzoil acid phosphomolybdic acid composite films for stabilization of passive layers on stainless steel, Proceedings of the 6th International Conference Mechatronic Systems and Materials. Abstracts, Opole, Poland, 2010.
- 4. S.S. Rouzmeh, R. Naderi, M. Mahdavian, Steel surface treatment with free different acid solutions and its effect on the protective properties of the subsequent silane coating, Progress in Organic Coatings 112 (2017) 133-140. DOI: https://doi.org/10.1016/j.porgcoat.2017.07.014
- 5. E. Owczarek, L. Adamczyk, Electrochemical and anticorrosion properties of bilayer polyrhodanine/isobutyltriethoxysialne coatings, Journal of Applied Electrochemistry 46/6 (2016) 635-643. DOI: https://doi.org/10.1007/s10800-016-0946-0
- 6. X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties, Solid State Ionics 176/5-6 (2005) 425-433. DOI: https://doi.org/10.1016/j.ssi.2004.10.004
- 7. W.J. Van Ooij, T.F. Child, Protecting metals with silanes coupling agents, Chemtech 28/2 (1998) 26-35.
- 8. T.F. Child, W.J. Van Ooij, Application of silane technology to prevent corrosion of metals and improve paint adhesion, Transactions of the IMF 77/2 (1999) 64-70. DOI: https://doi.org/10.1080/00202967.1999.11871249
- 9. W.J. Van Ooij, D. Zhu, G. Prasad, S. Jayaseelan, Y. Fu, N. Teredesai, Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding, Surface Engineering 16/5(2000) 386-396. DOI: https://doi.org/10.1179/026708400101517369
- 10. W.J. Van Ooij, J. Song, V. Subramanian, Silane-based pretreatments of aluminum and it alloys as chromate alternatives, ATB Metall 37 (1997) 137-142.
- 11. A. Kucharczyk, L. Adamczyk, K. Miecznikowski, The Influence of the Type of Electrolyte in the Modifying Solution on the Protective Properties of Vinyltrimethoxysilane/Ethanol-Based Coatings Formed on Stainless Steel X20Cr13, Materials 14/20 (2021) 6209. DOI: https://doi.org/10.3390/ma14206209
- 12. S. Somasundaram, Silane coatings of metallic biomaterials for biomedical implants: A preliminary review, Journal of Biomedical Materials Research Part B: Applied Biomaterials 106/8 (2018) 2901-2918. DOI: https://doi.org/10.1002/jbm.b.34151
- 13. L. Adamczyk, A. Królikowski, P.J. Kulesza, Corrosion protection of stainless steel X20Cr13 by 4-(pyr role-1-yl) benzoil acid modified poly(3,4-ethylenedioxythiophene) with phosphomolybdate composite coatings, Ochrona Przed Korozją 7(54) (2011) 458-461 (in Polish).
- 14. M. Guglielmi, G. Carturan, Precursors for sol-gel preparations, Journal of Non-Crystalline Solids 100/1-3 (1988) 16-30. DOI: https://doi.org/10.1016/0022-3093(88)90004-X
- 15. M.V. Rapp, S.H. Donaldson Jr., M.A. Gebbie, Y. Gizaw, P. Koenig, Y. Roiter, J.N. Israelchvili, Effects of surfactants and polyelectrolytes on the interaction between a negatively charged surface and a superhydrophobic polymer surface, Langmuir 31/29 (2015) 8013-8021. DOI: https://doi.org/10.1021/acs.langmuir.5b01781
- 16. S. Akhtar, A. Matin, A. Kumar, A. Ibrahim, T. Laoui, Enhancement of anticorrosion property of 304 stainless steel using silane coatings, Applied Surface Science 440 (2018) 1286-1297. DOI: https://doi.org/10.1016/j.apsusc.2018.01.203
- 17. S. Kikuchi, T. Saeki, M. Ishida, K. Tabata, K. Ohta, Sol-Gel transition of acid silica produced by a Y-shaped reactor, Nihon Reoroji Gakkaishi 38/4-5 (2010) 209-214. DOI: https://doi.org/10.1678/rheology.38.209
- 18. L.C. Klein (ed), Sol-gel technology for thin films, fibers, preforms, electronics and specialty shapes. William Andrew, Norwich, New York, 1988.
- 19. W.J. Van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, P. Puomi, Corrosion protection properties of organofunctional silanes ‒ an overview, Tsinghua Science and Technology 10/6 (2005) 639-664. DOI: https://doi.org/10.1016/S1007-0214(05)70134-6
- 20. M. Quinet, B. Neveu, V. Moutarlier, P. Audebert, L. Ricq, Corrosion protection of sol–gel coatings doped with an organic corrosion inhibitor: chloranil, Progress in Organic Coatings 58/1 (2007) 46-53. DOI: https://doi.org/10.1016/j.porgcoat.2006.11.007
- 21. D. Zhu, W.J. Van Ooij, Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane, Progress in Organic Coatings 49/1 (2004) 42-53. DOI: https://doi.org/10.1016/j.porgcoat.2003.08.009
- 22. L. Cecchetto, A. Denoyelle, D. Delabouglise, J.P. Petit, A silane pre-treatment for improving corrosion resistance performances of emeraldine base-coated aluminium samples in neutral environment, Applied Surface Science 254/6 (2008) 1736-1743. DOI: https://doi.org/10.1016/j.apsusc.2007.07.128
- 23. A.L. Correa-Borroel, S. Gutierrez, E. Arce, R. Cabrera-Sierra, P. Herrasti, Organosilanes and polypyrrole as anticorrosive treatment of aluminium 2024, Journal of Applied Electrochemistry 39 (2009) 2385-2395. DOI: https://doi.org/10.1007/s10800-009-9925-z
- 24. L. Adamczyk, A. Dudek, The influence of components concentration in the electrodeposition process on the protective properties of 3,4-ethylenedioxythiophene (EDOT) with 4-(pyrrole-1-yl) benzoil acid (PYBA), polyoxyethylene-10-laurylether (BRIJ) and lithium perchlorate, Proceedings of the 28th International Conference on Metallurgy and Materials, Brno, Czech Republic, 2019, 973-978. DOI: https://doi.org/10.37904/metal.2019.881
- 25. T.K. Das, S. Prusty, Review on Conducting Polymers and Their Applications, Polymer-Plastics Technology and Engineering 51/14 (2012) 1487-1500. DOI: https://doi.org/10.1080/03602559.2012.710697
- 26. G.B. Street, T.C. Clarke, Conducting Polymers: A Review of Recent Work, IBM Journal of Research and Development 25/1 (1981) 51-57. DOI: https://doi.org/10.1147/rd.251.0051
- 27. E. Armelin, R. Oliver, F. Liesa, I.J. Iribarren, F. Esrany, C. Aleman, Marine paint formulations: Conducting polymers as anticorrosive additives, Progress in Organic Coatings 59/1 (2007) 46-52. DOI: https://doi.org/10.1016/j.porgcoat.2007.01.013
- 28. J.I.I. Laco, F.C. Villota, F.L. Mestres, Corrosion protection of carbon steel with thermoplastic coatings and alkad resins containing polyaniline as conductive polimer, Progress in Organic Coatings 52/2 (2005) 151-160. DOI: https://doi.org/10.1016/j.porgcoat.2004.10.005
- 29. C. Ocampo, E. Armelin, F. Liesa, C. Aleman, X. Ramis, J.I. Iribarren, Application of a polythiophene derivative as anticorrosive additive for panits, Progress in Organic Coatings 53/3 (2005) 217-224. DOI: https://doi.org/10.1016/j.porgcoat.2005.02.009
- 30. L. Adamczyk, P.J. Kulesza, Fabrication of composite coatings of 4-(pyrrole-1-yl) benzoate-modified poly-3,4-ethylenedioxythiophene with phosphomolybdate and their application in corrosion protection, Electrochimica Acta 56/10 (2011) 3649-3655. DOI: https://doi.org/10.1016/j.electacta.2010.12.078
- 31. A. de Leon, R.C. Advincula, Conducting Polymers with Superhydrophobic Effects as Anticorrosion Coating, in: A. Tiwari, J. Rawlins, L.H. Hihara (eds), Intelligent Coatings for Corrosion Control, Butterworth-Heinemann, Oxford, UK, 2015, 409-430. DOI: https://doi.org/10.1016/B978-0-12-411467-8.00011-8
- 32. P.P. Deshpande, D. Sazou, Corrosion protection of metals by intrinsically conducting polymers, CRC Press, Boca Raton, Florida, 2016.
- 33. S.A. Kumar, K.S. Meenakshi, T.S.N. Sankaranarayanan, S. Srikanth, Corrosion resistant behaviour of PANI-metal bilayer coatings, Progress in Organic Coatings 62/3 (2008) 285-292. DOI: https://doi.org/10.1016/j.porgcoat.2008.01.005
- 34. K. Shah, J. Iroh, Electrochemical synthesis and corrosion behavior of poly(N-ethyl aniline) coatings on Al-2024 alloy, Synthetic Metals 132/1 (2002) 35-41. DOI: https://doi.org/10.1016/S0379-6779(02)00213-8
- 35. J.I. Martins, T.C. Reis, E.A. Bazzaoui, L. Martins, Polypyrrole coatings as a treatment for zinc-coated steel surfaces against corrosion, Corrosion Science 46/10 (2004) 2361-2381. DOI: https://doi.org/10.1016/j.corsci.2004.02.006
- 36. G.S. Akundy, J.O. Iroh, Polypyrrole coatings on aluminium - synthesis and characterization, Polymer 42/24 (2001) 9665-9669. DOI: https://doi.org/10.1016/S0032-3861(01)00529-8
- 37. G. Kousik, S. Pitchumani, N.G. Renganathan, Electrochemical characterization polythiophene-coated steel, Progress in Organic Coatings 43/4 (2001) 286-291. DOI: https://doi.org/10.1016/S0300-9440(01)00211-9
- 38. A.C.C. De Leon, R.B. Pernites, R.C. Advincula, Superhydrophobic colloidally textured polythiophene film as superior anticorrosion coating, ACS Applied Materials and Interfaces 4/6 (2012) 3169-3176. DOI: https://doi.org/10.1021/am300513e
- 39. R. Posner, O. Ozcan, G. Grundmeier, Water and Ions at polymer/metal interfaces, in: L. da Silva, C. Sato (eds), Design of Adhesive Joints Under Humid Conditions. Advanced Structured Materials, vol. 25, Springer, Berlin, Heidelberg, 2013, 21-52. DOI: https://doi.org/10.1007/978-3-642-37614-6_2
- 40. A.J. Motheo (ed), Aspects on fundaments and applications of conducting polymers, IntechOpen, Rjieka, 2012.
- 41. J.F. Ponder Jr., A.M. Osterholm, J.R. Reynolds, Designing a soluble PEDOT analogue without surfactants or dispersants, Macromolecules 49/6 (2016) 2106-2111. DOI: https://doi.org/10.1021/acs.macromol.5b02638
- 42. L. Adamczyk, K. Giza, A. Dudek, Electrochemical preparation of composite coatings of 3,4-etylenodioxythiophene (EDOT) and 4-(pyrrole-1-yl) benzoil acid (PyBA) with heteropolyanions, Materials Chemistry and Physics 144/3 (2014) 418-424. DOI: https://doi.org/10.1016/j.matchemphys.2014.01.012
- 43. T.A. Skotheim, J. Reynolds, Handbook of Conducting Polymers. Condjugated Polymers - theory, synthesis, properties and characterization, Third Edition, CRC Presss, Boca Raton, Florida, 2007.
- 44. N.T.L. Hien, B. Garcia, A. Paulleret, C. Deslouis, Role of doping ions in the corrosion protection of iron by polypyrrole films, Electochimica Acta 50/7-8 (2005) 1747-1755. DOI: https://doi.org/10.1016/j.electacta.2004.10.072
- 45. S. Bhandari, M. Deepa, S. Singh, G. Gupta, R. Kant, Redox behavior and optical response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in a camphorsulfonic acid based micellar solution, Electrochimica Acta 53/7 (2008) 3189-3199. DOI: https://doi.org/10.1016/j.electacta.2007.11.018
- 46. X. Du, Z. Wang, Effects of polymerization potential on the properties of electrosynthesized PEDOT films, Electrochimica Acta 48/12 (2003) 1713-1717. DOI: https://doi.org/10.1016/S0013-4686(03)00143-9
- 47. M. Góral, M. Jouini, C. Perruchot, K. Miecznikowski, I.A. Rutkowska, P.J. Kulesza, Integration of vanadium-mixed addenda Dawson heteropolytungstate within poly(3,4-ethylenedioxythiophene) and poly(2,2’-bithiophene) films by electrodeposition from the nonionic micellar aqueous medium, Electrochimica Acta 56/10 (2011) 3605-3615. DOI: https://doi.org/10.1016/j.electacta.2011.01.042
- 48. T.Y. Kim, J.E. Kim, Y.S. Kim, T.H. Lee, W.J. Kim, K.S. Suh, Preparation and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using partially sulfonated poly(styrene-butadiene-styrene) triblock copolymer as a polyelectrolyte, Current Applied Physics 9/1 (2009) 120-125. DOI: https://doi.org/10.1016/j.cap.2007.12.005
- 49. H. Cortes, H. Hernandez-Parra, S.A. Bernal-Chavez, M.L. Del Prado-Audelo, I.H. Caballero-Floran, F.V. Borbolla-Jimenez, M. Gonzalez-Torres, J.J. Magana, G. Leyva-Gomez, Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses, Materials 14/12 (2021) 3197. DOI: https://doi.org/10.3390/ma14123197
- 50. M. Ferrari, F. Ravera, Surfactants and wetting at supersuperhydrophobic surfaces: Water solutions and non-aqueous liquids, Advances in Colloid and Interface Science 161/1-2 (2010) 22-28. DOI: https://doi.org/10.1016/j.cis.2010.09.002
- 51. A. Kucharczyk, L. Adamczyk, The influence of the concentration of ingredients in the immersion deposition process on the protective properties of silan coatings made on stainless steel, Ochrona Przed Korozją 10(63) (2020) 327-331 (in Polish). DOI: https://doi.org/10.15199/40.2020.10.2
- 52. A. Kucharczyk, L. Adamczyk, The influence of BRJI concentration on the protective properties of vinyltrimetoxysialne-based coayings made on X20Cr13 and 41Cr4 steels, Ochrona Przed Korozją 3(65) (2022) 83-87 (in Polish). DOI: https://doi.org/10.15199/40.2022.3.2
- 53. N. Sakmeche, J.J. Aaron, S. Aeiyach, P.C. Lacaze, Usefulness of aqueous anionic micellar media for electrodeposition of poly-(3,4-ethylenedioxythiophene) films on iron, mild steel and aluminium, Electrochimica Acta 45/12 (2000) 1921-1931. DOI: https://doi.org/10.1016/S0013-4686(99)00417-X
- 54. V.S. Rao, L.K. Singhal, Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid, Journal of Materials Science 44 (2009) 2327-2333. DOI: https://doi.org/10.1007/s10853-008-2976-4
- 55. V.V. Tatarchuk, I.A. Druzhinina, V.I. Zaikovskii, E.A. Maksimovskii, Synthesis of gold nanoparticles and thin films with the use of micellar solution of Brij 30, Russian Journal of Inorganic Chemistry 62/3 (2017) 372-379. DOI: https://doi.org/10.1134/S0036023617030184
- 56. Y. Cho, H.S. Sundaram, C.J. Weinman, M.Y. Paik, M.D. Dimitriou, J.A. Finlay, M.E. Callow, J.A. Callow, E.J. Kramer, C.K. Ober, Triblock copolymers with grafted fluorine-free, amphiphilic, non-ionic side cjains for antifouling and fouling-release applications, Macromolecules 44/12 (2011) 4783-4792. DOI: https://doi.org/10.1021/ma200269s
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-63c6d565-1bcf-4ebf-be12-a5a9cb73b60e