Warianty tytułu
Modeling of coupling between damage and phase transformation in austenitic stainless steel at cryogenic temperatures
Języki publikacji
Abstrakty
Stale austenityczne w ekstremalnie niskich temperaturach podlegają trzem zjawiskom dyssypatywnym: plastycznemu płynięciu, przemianie fazowej γ→α' oraz rozwojowi uszkodzeń. Przeprowadzone eksperymenty dowodzą, że pojawiające się inkluzje martenzytu powodują spowolnienie rozwoju uszkodzeń plastycznych w matrycy austenitycznej. W pracy przedstawiony został opis konstytutywny zachowania się stali austenitycznej, poddanej obciążeniu w temperaturze bliskiej zeru absolutnemu z uwzględnieniem sprzężenia pomiędzy zjawiskami dyssypatywnymi. Został także przedstawiony algorytm numeryczny, opracowany w celu wykonania symulacji jednoosiowego rozciągania.
FCC metals and alloys undergo at low temperatures three distinct phenomena: dynamic strain ageing, plastic strain induced transformation from the parent phase (γ) to the secondary phase (α') and evolution of micro-damage. Experimental results indicate the correlation between decreasing damage rate and increasing martensite content. In the present paper the constitutive model of the behaviour of stainless steel applied at cryogenic temperature was described, where the three dissipative phenomena coexist. Also the numerical algorithm was worked out, and numerical simulation of uniaxial tension was performed.
Czasopismo
Rocznik
Tom
Strony
27--44
Opis fizyczny
Bibliogr. 19 poz., wz., wykr., tab.
Bibliografia
- [1] Skoczeń B., Bielski J., Sgobba S., Marcinek D., Constitutive model of discontinuous plastic flow at cryogenic temperatures, International Journal of Plasticity, 26, 2010, 1659-1679.
- [2] Garion C., Skoczeń B., Modeling of plastic strain induced martensitic transformation for cryogenic applications, Journ. of Applied Mechanics 69, 6, 2002, 755-762.
- [3] Sitko M., Skoczeń B., Effect of γ→α' phase transformation on plastic adaptation to cyclic loads at cryogenic temperatures, International Journal of Solids and Structures, 49, 2012, 613-634.
- [4] Egner H., Skoczeń B., Ductile damage development in two-phase metallic materials applied at cryogenic temperatures, International Journal of Plasticity, 26, 4, 2010, 488-506.
- [5] Obst, B., Nyilas, A., Experimental evidence on the dislocation mechanism of serrated yielding in f.c.c. metals and alloys at low temperatures, Materials Science and Engineering, A137, 1991, 141-150.
- [6] Lemaitre J., Evaluation of dissipation and damage in metals, Proc. I.C.M. Kyoto, Vol. 1, 1971.
- [7] Simo J.C., Ju J.W., Strain- and stress-based continuum damage models; I-Formulation, II-Computational aspects, International Journal of Solids and Structures, 23, 1987, 821-869.
- [8] Cordebois J.P., Sidoroff F., Damage induced elastic anisotropy, Coll. Euromech 115, Villard de Lans także w: Mechanical Behavior of Anisotropic Solids, ed. Boehler J.P., Martinus Nijhoff, Boston, 1983, 1979, 761-774.
- [9] Sidoroff F. Description of anisotropic damage application to elasticity, [w:] IUTAM Coll. on Physical Nonlinearities in Structural Analysis, Springer, Berlin 1981, 237-244.
- [10] Chow CL., Lu T.J., An analytical and experimental study of mixed-mode ductile fracture under nonproportional loading, Int. J. Damage Mech., 1, 1992, 191-236.
- [11] Murakami S., Ohno N., A continuum theory of creep and creep damage, in: Ponter, A.R.S., Hayhurst D.R. (Eds), Creep in Structures, 3rd IUTAM Symposium on Creep in Structures, Springer, Berlin 1980, 422-444.
- [12] Skrzypek J., Podstawy Mechaniki Uszkodzeń, Wydawnictwo Politechniki Krakowskiej, Kraków 2006.
- [13] Abu Al-Rub R.K., Voyiadjis G.Z., On the coupling of anisotropic damage and plasticity models for ductile materials, International Journal of Solids and Structures, 40, 2003, 2611-2643.
- [14] Lemaitre J., A Course on Damage Mechanics, Springer-Verlag, Berlin 1992.
- [15] Chaboche J.L., Continuum Damage Mechanics: Part II – Damage Growth, Crack Initiation and Crack Growth, Jour. Applied Mechanics, 55, 1988, 64-72.
- [16] Litewka A., Dębiński J., Load-induced oriented damage and anisotropy of rock-like materials, International Journal of Plasticity 19, 2003, 2171-2191.
- [17] Bogucka J., Dębiński J., Litewka A., Mesquita A.B., Experimental verification of mathematical model for oriented damage of concrete, Mechanica Experimental, 3, 1998, 11-18.
- [18] Olson G.B., Cohen M., Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions, 6A, 1975, 791-795.
- [19] Sitko M., Constitutive Modelling of Functionally Graded Materials for Low Temperature Structural Applications, praca doktorska, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6382c657-0b13-4479-8608-314d424a45ba