Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 39, no. 1 | 133--147
Tytuł artykułu

Adaptive shrinkage on dual-tree complex wavelet transform for denoising real-time MR images

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Performance of denoising filters which are based on the principle of wavelet thresholding greatly depends upon selection of the threshold value. An objective method is proposed in this paper for computing the optimum value of threshold in DTCWT based denoising. At optimum threshold, annoying intensity transitions of pixels in the homogeneous regions of the images, contributed by noise get completely suppressed and the true edges remain unaffected. For finding optimum value of threshold a newly derived quality metric termed as Optimum Denoising Index (ODI), which quantifies both the edge-preservation and smoothing of homogeneous regions is used. The ODI values corresponding to mean, median, Gaussian, Wiener, Bilateral, Kuwahara filters and wavelet thresholding are 0.1192±0.0118, 0.2196±0.0125, 0.1283±0.0118, 0.2106±0.0145, 0.1590±0.0331, 0.2200±0.0101 and 0.2516±0.0094, respectively. The wavelet thresholding has better edge-preservation and denoising capacity than the said denoising schemes. The ODI is highly correlated with its existing alternatives like Peak Signal to Noise Ratio (PSNR) and Structured Similarity Index Metric (SSIM) with values 0.9165 0.0536 and 0.9050 0.0452 respectively. This shows ODI is a good alternative to PSNR and SSIM.
Wydawca

Rocznik
Strony
133--147
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Computer Science and Engineering, National Institute of Technology, Goa,, India, simi.vr@nitgoa.ac.in
  • Department of Computer Science and Engineering, National Institute of Technology, Goa, India, dr.reddy@nitgoa.ac.in
Bibliografia
  • [1] Amiot C, Girard C, Chanussot J, Pescatore J, Desvignes M. Spatio-temporal multiscale denoising of fluoroscopic sequence. IEEE Trans Med Imag 2016;35(6):1565–74.
  • [2] Hu K, Cheng Q, Gao X. Wavelet-domain TI Wiener-like filtering for complex MR data denoising. Magn Reson Imag 2016;34:1128–40.
  • [3] Srinivasan L, Rakvongthai Y, Oraintara S. Microarray image denoising using complex Gaussian scale mixtures of complex wavelets. IEEE J Biomed Health Inform 2014;18 (4):1423–30.
  • [4] Sendur L, Selesnick IW. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Process 2002;50(11):2744–56.
  • [5] Pogam AL, Hanzouli H, Hatt M, Rest CC, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal 2013;17(8):877–91.
  • [6] Ufuk B. Dual tree complex wavelet transform based denoising of optical microscopy images. Biomed Opt Express 2017;3231–9.
  • [7] Howlader T, Chaubey YP. Noise reduction of cDNA microarray images using complex wavelets. IEEE Trans Image Process 2010;19(8):1953–67.
  • [8] Naimi H, Houda AB, Mitiche A, Mitiche L. Medical image denoising using dual tree complex thresholding wavelet transform and Wiener filter. J King Saud Univ – Comput Inform Sci 2015;27:40–5.
  • [9] Donoho DL, Johnstone IM. Ideal spatial adaptation via wavelet shrinkage. Biometrika 1994;81:425–55.
  • [10] Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 2000;9(9):1532–46.
  • [11] Hashemi M, Beheshti S. Adaptive noise variance estimation in BayesShrink. IEEE Signal Process Lett 2010;17(1):12–5.
  • [12] Taşmaz H, Erçelebi E. Image enhancement via space- adaptive lifting scheme exploiting sub-band dependency. Digital Signal Process 2010;20:1645–55.
  • [13] Santos LS, Secchi AR, Biscaia Jr EC. Optimal wavelet-threshold selection to solve dynamic optimization problems computer aided chemical engineering, vol. 33. Elsevier; 2014. p. 247–52.
  • [14] Hashemi S, Beheshti S. Adaptive image denoising by rigorous BayesShrink thresholding. IEEE Statistical Signal Processing Workshop (SSP), Nice. 2011. pp. 713–6.
  • [15] Kuppusamy PG, Joseph J, Sivaraman J. A full reference Morphological Edge Similarity Index to account processing induced edge artifacts in magnetic resonance images. Biocybern Biomed Eng 2017;37(1):159–66.
  • [16] Joseph J, Sivaraman J, Periyasamy R, Simi VR. Noise based computation of decay control parameter in nonlocal means filter for MRI restoration. J Med Imag Health Inform 2016;6:1–11.
  • [17] Joseph J, Periyasamy R, Sivaraman J, Simi VR. An edge preservation index for evaluating nonlinear spatial restoration in MR images. Curr Med Imag Rev 2016;12(4).
  • [18] Joseph J, Periyasamy R. An analytical method for the adaptive computation of threshold of gradient modulus in 2D anisotropic diffusion filter. Biocybern Biomed Eng 2017;37(1):1–10.
  • [19] Joseph J, Sivaraman J, Periyasamy R, Simi VR. An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images. Biocybern Biomed Eng 2017;37 (3):489–97.
  • [20] Joseph J, Periyasamy R. A fully customized enhancement scheme for controlling brightness error and contrast in magnetic resonance images. Biomed Signal Process Control 2018;39:271–83.
  • [21] Joseph J, Periyasamy R. An Image Driven Bilateral Filter with Adaptive Range and Spatial Parameters for Denoising Magnetic Resonance Images. Electrical & Computer Engineering July 2018;69:782–95.
  • [22] Joseph J, Periyasamy R. A polynomial model for the adaptive computation of threshold of gradient modulus in 2D anisotropic diffusion filter. Optik 2018;157:841–53.
  • [23] Joseph J, Simi VR. Segmentation of Glioblastoma Multiforme from MR images–a comprehensive review. Egypt J Radiol Nucl Med 2015;46(4):1105–10.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-635ba470-41d9-4f96-9865-3a9a1506d5db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.