Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 26 | 23--32
Tytuł artykułu

State-of-the-Art Techniques in Artificial Intelligence for Continual Learning: A Review

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
Artificial neural networks are used in many state-of-the-art systems for perception, and they thrive at solving classification problems, but they lack the ability to transfer that learning to a new task. Human and animals both have the capability of acquiring knowledge and transfer them continually throughout their lifespan. This term is known as continual learning. Continual learning capabilities are important to Artificial Neural Network in the real world especially with the increasing stream of data. However, it remains a challenge to be achieved because they are prone to catastrophic forgetting. Fixing this problem is critical, so that ANN incrementally learn and improve when deployed to real life situations. In this paper, we did a taxonomy of continual learning first in human by introducing plasticity-stability dilemma and some other learning and forgetting process in the brain. We did a state-of-the-art review of three different approaches to continual learning to mitigate catastrophic forgetting.
Wydawca

Rocznik
Tom
Strony
23--32
Opis fizyczny
Bibliogr. 51 poz., wz., tab.
Twórcy
  • School of Computing, University of Eastern Finland, Kuopio, Finland, bukolas@uef.fi
Bibliografia
  • 1. German, P., Ronald, K., Jose, P., Christopher, K., & Stefan, W. (2019). Continual lifelong learning with neural networks: A review. ScienceDirect- Neural Networks, 113, 54-71. http://dx.doi.org/10.1016/j.neunet.2019.01.012
  • 2. Z. Chen and B. Liu. (2018). Continual Learning and Catastrophic Forgetting. Morgan & Claypool Publishers. http://dx.doi.org/10.2200/S00832ED1V01Y201802AIM037
  • 3. Nicolas, M., Gregory, G., & David, F. (2019). Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. Proceedings of the National Academy of Sciences, 115(44), E10467-E10475. http://dx.doi.org/10.1073/pnas.1803839115
  • 4. Kirkpatrick, J., Pascanu, R., Rabinowitza, N., Veness, J., Desjardins, G., Rusu, A. A., . . . Hadsell, R. (2018). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 3521–3526. http://dx.doi.org/10.1073/pnas.1611835114
  • 5. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., & Tuytelaars, T. (2018). Memory Aware Synapses: Learning what (not) to forget. 15th European Conference on Computer Vision ECCV'18. http://dx.doi.org/10.1007/978-3-030-01219-9_9
  • 6. Vincenzo, L., Davide, M., & Lorenzo, P. (2019). Fine-Grained Continual Learning. Cornell University: Arxiv.org, 1-12. Retrieved from https://arxiv.org/abs/1907.03799
  • 7. Pomponi, J., Scardapane, S., Lomonaco, V., & Uncini, A. (2020). Efficient Continual Learning in Neural Networks with Embedding Regularization. ScienceDirect - NeuroComputing, 297, 139-148. http://dx.doi.org/10.1016/j.neucom.2020.01.093
  • 8. Michael, M., & Neal, C. (1989). Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. ScienceDirect- The Psychology of Learning and Motivation, 24, 109-165. http://dx.doi.org/10.1016/S0079-7421(08)60536-8
  • 9. Andrew, P., Ryan, C., Patrick, M., Stephen, B., Renee, E., & MarioAguilar-Simon. (2019). Uncertainty-based modulation for lifelong learning. ScienceDirect - Neural Networks, 120, 129-142. http://dx.doi.org/10.1016/j.neunet.2019.09.011
  • 10. Zenke, F., Poole, B., & Ganguli, S. (2017). Continual Learning Through Synaptic Intelligence. Proceedings of the 34 th International Conference on Machine Learning, PMLR 70, 70, pp. 3987–3995. Sydney, Australia. http://dx.doi.org/10.5555/3305890.3306093
  • 11. De, L. M., Rahaf, A., Marc, M., Sarah, P., Xu, J., Ales, L., . . . Tinne, T. (2019). Continual learning: A comparative study on how to defy forgetting in classification tasks. Cornell University: arxiv.org, 26. http://dx.doi.org/10.1109/TPAMI.2021.3057446
  • 12. Heechul, J., Jeongwoo, J., Minju, J., & Junmo, K. (2016). Less-forgetting Learning in Deep Neural Networks. IEEE, 1-5. Retrieved from https://arxiv.org/abs/1607.00122
  • 13. M.Stark, S., & E.L.Stark, C. (2016). Chapter 67 - Introduction to Memory. Academic Press. http://dx.doi.org/10.1016/B978-0-12-407794-2.00067-5
  • 14. Magee, J. C., & Grienberger, C. (2020). Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience, 43, 95-117. http://dx.doi.org/10.1146/annurev-neuro-090919-022842
  • 15. Quentin, R., Awosika, O., & Leonardo, G. C. (2019). Plasticity and recovery of function. ScienceDirect: Handbook of Clinical Neurology, 163, 473-483. http://dx.doi.org/10.1016/B978-0-12-804281-6.00025-2.
  • 16. Wickliffe, C. A., & Robins, A. (2005). Memory retention – the synaptic stability versus plasticity dilemma. ScienceDirect. http://dx.doi.org/10.1016/j.tins.2004.12.003
  • 17. Junichiro, H., Junichiro, Y., & Shin, I. (2006). Balancing Plasticity and Stability of On-Line Learning Based on Hierarchical Bayesian Adaptation of Forgetting Factors. ScienceDirect- NeuroComputing, 69(16-18), 1954-1961. http://dx.doi.org/10.1016/j.neucom.2005.11.020
  • 18. Sehgal, M., Song, C., L.Ehlers, V., & R.MoyerJr., J. (2013). Learning to learn – Intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiology of Learning and Memory, 105, 186-199. http://dx.doi.org/10.1016/j.nlm.2013.07.008
  • 19. Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., & Ranzato, M. (2019). On Tiny Episodic Memories in Continual Learning. Cornell University, 1-15. Retrieved from https://arxiv.org/abs/1902.10486
  • 20. Lomonaco, V. (2019). Continual Learning with Deep Architectures. Bologna: Department of Computer Science and Engineering, University of Bologna.
  • 21. Li, Z., & Hoiem, D. (2016). Learning without Forgetting. The 14th European Conference on Computer Vision ECCV2016. http://dx.doi.org/10.1109/TPAMI.2017.2773081
  • 22. Ajemiana, R., D’Ausilio, A., Moorman, H., & Bizzi, E. (2013). A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits. Proceeding of the National Academy of Sciences of the United States of America, 5078-5087. http://dx.doi.org/10.1073/pnas.1320116110
  • 23. D.O., Hebbs. (1949). The organization of behavior; a neuropsychological theory. Psychology Press. http://dx.doi.org/10.1007/978-3-642-70911-1_15
  • 24. Zenke, F., & Gerstner, W. (2017). Hebbian plasticity requires compensatory processes on multiple timescales. Philosophical Transactions of The Royal Society B Biological Sciences, 372(1715). http://dx.doi.org/10.1098/rstb.2016.0259
  • 25. Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annual Review of Neuroscience, 23, 649-711. http://dx.doi.org/10.1146/annurev.neuro.23.1.649
  • 26. Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman. (2019). Alleviating Catastrophic Forgetting using Context-Dependent Gating and Synaptic Stabilization. Cornell University - arxiv.org. http://dx.doi.org/10.1073/pnas.1803839115
  • 27. Steven J.Cooper. (2005). Donald O. Hebb’s synapse and learning rule: a history and commentary. Neuroscience and Biobehavioral Reviews, 28, 851-874. http://dx.doi.org/10.1016/j.neubiorev.2004.09.009
  • 28. Abraham, W. C., Jones, O. D., & Glanzman, D. L. (2019). Is plasticity of synapses the mechanism of long-term memory storage? Nature Partner Journal- Science of Learning, 4, 9. http://dx.doi.org/10.1038/s41539-019-0048-y
  • 29. German, P., Ronald, K., Jose, P., Christopher, K., & Stefan, W. (2019). Continual lifelong learning with neural networks: A review. ScienceDirect- Neural Networks, 113, 54-71. http://dx.doi.org/10.1016/j.neunet.2019.01.012
  • 30. Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., & Zhang, B.-T. (2017). Overcoming Catastrophic Forgetting by Incremental Moment Matching. 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, Califonia, USA. http://dx.doi.org/10.5555/3294996.3295218
  • 31. Toneva, M., Sordoni, A., Tachet, d. C., Trischler, A., Bengio, Y., & Geoffrey, J. G. (2019). An Empirical Study of Example Forgetting During Deep Neural Network Learning. The International Conference on Learning Representations (ICLR) 2019. Retrieved from https://arxiv.org/abs/1812.05159
  • 32. Fiona M Richardson, Michael S C Thomas(2008). Critical periods and catastrophic interference effects in the development of self-organizing feature maps. Developmental Science, 371–389. http://dx.doi.org/10.1111/j.1467-7687.2008.00682.x
  • 33. Lopez-Paz, D., & Ranzato, M. (2016). Gradient Episodic Memory for Continual Learning. Facebook Artificial Intelligence Research, 1-17. http://dx.doi.org/10.5555/3295222.3295393
  • 34. Rahaf, A. (2019). Continual Learning in Neural Networks. Leuvan, Belgium: KU Leuven – Faculty of Engineering Science:. Retrieved from https://arxiv.org/abs/1910.02718v2
  • 35. Pascanu, R., Teh, Y., Pickett, M., & Ring, M. (2018). Continual Learning. Conference on Neural Information Processing Systems. Montréal, Canada: NeurIPS.
  • 36. Liu, X., Masana, M., Herranz, L., Weijer, J. V., Lopez, A. M., & Bagdanov, A. D. (2018). Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting. International Conference on Pattern Recognition'18. http://dx.doi.org/10.1109/ICPR.2018.8545895
  • 37. Nguyen, C. V., Li, Y., Bui, T. D., & Turner, R. E. (2018). Variational Continual Learning. International Conference on Learning Representations (ICLR). http://dx.doi.org/10.17863/CAM.35471
  • 38. Adel, T., Zhao, H., & Turner, R. E. (2020). Continual Learning with Adaptive Weights. The International Conference on Learning Representations (ICLR). Retrieved from https://openreview.net/forum?id=Hklso24Kwr
  • 39. Serrà, J., Surís, D., Miron, M., & Karatzoglou, A. (2018). Overcoming Catastrophic Forgetting with Hard Attention to the Task. International Conference on Machine Learning (ICML 2018). Retrieved from https://arxiv.org/abs/1801.01423
  • 40. Hinton, G., Vinyals, O., & Dean, J. (2014). Distilling the Knowledge in a Neural Network. NIPS 2014 Deep Learning Workshop: Neural and Evolutionary Computing. Retrieved from https://arxiv.org/abs/1503.02531
  • 41. Ju, X., & Zhanxing, Z. (2019). Reinforced Continual Learning. Cornell University, 1-10. http://dx.doi.org/10.5555/3326943.3327027
  • 42. Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., & Zhang, B.-T. (2017). Overcoming Catastrophic Forgetting by Incremental Moment Matching. 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, Califonia, USA. http://dx.doi.org/10.5555/3294996.3295218
  • 43. Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., … Hadsell, R. (2016). Progressive Neural Network. Google DeepMind: https://arxiv.org/abs/1606.04671, 1-14. Retrieved from https://arxiv.org/abs/1606.04671
  • 44. Jary, P., Simone, S., Vincenzo, L., & Aurelio, U. (2020). Efficient Continual Learning in Neural Networks with Embedding Regularization. ScienceDirect- Neurocomputing, 397, 139-148. http://dx.doi.org/10.1016/j.neucom.2020.01.093
  • 45. Richard, K., Botond, C., Alexej, K., der, S. P., & Stephan, G. (2020). Continual Learning with Bayesian Neural Networks for Non-Stationary Data. International Conference on Learning Representations. Virtual Conference. Retrieved from https://arxiv.org/abs/1910.04112
  • 46. Kemker, R., & Kanan, C. (2018). FearNet: Brain-Inspired Model for Incremental Learning. The Sixth International Conference on Learning Representations. Vancouver, Canada. Retrieved from https://arxiv.org/abs/1711.10563
  • 47. Miltiadis, P., Jenny, B.-P., Akka, Z., Boris, M., & de, R. A. (2020). Move to-Data: A new Continual Learning approach with Deep CNNs, Application for image-class recognition. hal-02865878v1f. Retrieved from https://arxiv.org/abs/2006.07152
  • 48. Arslan, C., Marc’Aurelio, R., Marcus, R., & Mohamed, E. (2019). Efficient Lifelong Learning with A-GEM. International Conference on Learning Representations (ICLR). New Orleans. Retrieved from https://arxiv.org/abs/1812.00420
  • 49. Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). iCaRL: Incremental Classifier and Representation Learning. Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii. doi:iCaRL: Incremental Classifier and Representation Learning
  • 50. Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, Yee Whye Teh(2020). Functional Regularisation for Continual Learning with Gaussian Processes. International Conference on Learning Representations. Virtual Conference. Retrieved from https://arxiv.org/abs/1901.11356
  • 51. Richards, B. A., & Frankland, P. W. (2017). The Persistence and Transience of Memory. Cell Press journal, 94(6), 1071-1084. http://dx.doi.org/10.1016/j.neuron.2017.04.037
Uwagi
1. Preface
2. Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Communication Papers
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-62fb2f0d-03b0-41bd-90c6-1b82ed03e5f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.