Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 25, nr 1 | 83--90
Tytuł artykułu

Fractional Ostrowski type inequalities for functions whose certain power of modulus of the first derivatives are pre-quasi-invex via power mean inequality

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we establish fractional Ostrowski’s inequalities for functions whose certain power of modulus of the first derivatives are pre-quasi-invex via power mean inequality.
Wydawca

Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Laboratoire des télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria, badrimeftah@yahoo.fr
Bibliografia
  • [1] M. Alomari and M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA 13 (2010), no. 2, Article ID 3.
  • [2] M. W. Alomari and S. Hussain, An inequality of Ostrowski’s type for preinvex functions with applications, Tamsui Oxf. J. Inf. Math. Sci. 29 (2013), no. 1, 29-37.
  • [3] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005), no. 8, 1473-1484.
  • [4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications, in: Inequality Theory and Applications. Vol. 2 (Chinju/Masan 2001), Nova Science, Hauppauge (2003), 19-32.
  • [5] H. Budak and M. Z. Sarikaya, On generalized Ostrowski-type inequalities for functions whose first derivatives absolute values are convex, Turkish J. Math. 40 (2016), no. 6, 1193-1210.
  • [6] P. Cerone and S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math. 37 (2004), no. 2, 299-308.
  • [7] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Aust. Math. Soc. 57 (1998), no. 3, 377-385.
  • [8] S. S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International, RGMIA Res. Rep. Coll. 5 (2002), Article ID 30.
  • [9] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), no. 2, 545-550.
  • [10] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, An. Univ. Craiova Ser. Mat. Inform. 34 (2007), 83-88.
  • [11] I. Işcan, Ostrowski type inequalities for functions whose derivatives are preinvex, Bull. Iranian Math. Soc. 40 (2014), no. 2, 373-386.
  • [12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
  • [13] B. Meftah, Ostrowski inequalities for functions whose first derivatives are logarithmically preinvex, Chin. J. Math. (N. Y.) 2016 (2016), Article ID 5292603.
  • [14] B. Meftah, Some new Ostrwoski’s inequalities for functions whose nth derivatives are r-convex, Int. J. Anal. 2016 (2016), Article ID 6749213.
  • [15] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Math. Appl. (East European Series) 61, Kluwer Academic, Dordrecht, 1993.
  • [16] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Math. Sci. Eng. 187, Academic Press, Boston, 1992.
  • [17] R. Pini, Invexity and generalized convexity, Optimization 22 (1991), no. 4, 513-525.
  • [18] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527-1538.
  • [19] M. Z. Sarikaya, S. Erden and H. Budak, Some generalized Ostrowski type inequalities involving local fractional integrals and applications, Adv. Inequal. Appl. 2016 (2016), Article ID 6.
  • [20] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl. 63 (2012), no. 7, 1147-1154.
  • [21] K.-L. Tseng, Improvements of some inequalities of Ostrowski type and their applications, Taiwanese J. Math. 12 (2008), no. 9, 2427-2441.
  • [22] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), no. 1, 29-38.
  • [23] H. Yue, Ostrowski inequality for fractional integrals and related fractional inequalities, Transylv. J. Math. Mech. 5 (2013), no. 1, 85-89.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-62bdf711-1482-423b-81ab-d9c3af774a08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.